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SUMMARY
Aging is the key risk factor for cognitive decline, yet the molecular changes underlying brain aging remain
poorly understood. Here, we conducted spatiotemporal RNA sequencing of the mouse brain, profiling
1,076 samples from 15 regions across 7 ages and 2 rejuvenation interventions. Our analysis identified a
brain-wide gene signature of aging in glial cells, which exhibited spatially defined changes in magnitude.
By integrating spatial and single-nucleus transcriptomics, we found that glial aging was particularly acceler-
ated in white matter compared with cortical regions, whereas specialized neuronal populations showed re-
gion-specific expression changes. Rejuvenation interventions, including young plasma injection and dietary
restriction, exhibited distinct effects on gene expression in specific brain regions. Furthermore, we discov-
ered differential gene expression patterns associated with three human neurodegenerative diseases, high-
lighting the importance of regional aging as a potential modulator of disease. Our findings identify molecular
foci of brain aging, providing a foundation to target age-related cognitive decline.
INTRODUCTION

Aging is the predominant risk factor for cognitive dysfunction1,2

and several neurodegenerative disorders, including Alzheimer’s

disease (AD) and Parkinson’s disease (PD).3–5 It remains unclear,

though, how aging contributes to the development of these

distinct diseases of the brain, given their differences in patholog-

ical hallmarks, time of onset, and, notably, the regions affected.4

A quantitative understanding of the dynamics of aging across the

brain may provide new insight into the relationship between ag-

ing and neurodegeneration. Interestingly, neuroimaging studies

using structural and functional magnetic resonance imaging

(MRI) data indicate that aging impacts the brain in a region-spe-

cific manner.6,7 However, these structural manifestations pro-

vide limited insight into the underlying molecular alterations

occurring during brain aging. By contrast, changes in gene

expression can be a readout of cellular deterioration and molec-
Cell 186, 4117–4133, September
ular processes accompanying aging, permitting quantitative

comparisons of aging rates between tissues8 and cell types.9

Previous studies have profiled age-related gene expression

changes in human brain tissue, yet these microarray-based ex-

periments capture a limited set of transcripts and usually cover

one to four regions10,11 or quantify the transcriptome at low tem-

poral resolution.12,13 Expression profiling during human brain ag-

ing is particularly challenging since it can take hours to days

before postmortem tissue is stabilized.13–15 Alternatively,

expression profiling in model organisms like Mus musculus en-

ables quantitative data with minimal confounding factors, but

comprehensive studies covering more than a few regions and

at high temporal resolution16–19 do not—to our knowledge—

yet exist. In consequence, this limitation also complicates the

dissection of molecular mechanisms that mediate the effects

of experimental disease models or interventions targeting the

aging process, such as dietary restriction or young plasma
14, 2023 Crown Copyright ª 2023 Published by Elsevier Inc. 4117
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Figure 1. Brain regions exhibit distinct transcriptional patterns of aging

(A) Cohort overview. Whole brains were collected from male (n = 3–5; 3–28 months) and female (n = 5; 3–21 months) C57BL/6JN mice.

(B) Study outline. 15 brain regions were isolated and analyzed using bulk-seq.

(C) UMAP representation of brain region transcriptomes.

(D) Diffusion maps of region transcriptomes from selected areas.

(legend continued on next page)
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injection, which delay molecular and cognitive phenotypes of

brain aging.20

RESULTS

Spatiotemporal quantification of age-related gene
expression across the mouse brain
Seeking a molecular understanding of the spatiotemporal

changes of the mammalian brain, we punched out 15 regions

from each hemisphere of coronal brain sections of 59 mice (Fig-

ure 1A; n = 3–6 males per age; aged 3, 12, 15, 18, 21, 26, and

28 months; n = 5 females per age; aged 3, 12, 15, 18, and

21 months; all C57BL/6JN strain): Three cortical regions (motor

area, visual area, and entorhinal cortex; Mot.cor, Vis.cor, and

Ent.cor, respectively), anterior (dorsal) and posterior (ventral)

hippocampus (Hipp.ant and Hipp.post, respectively), hypothala-

mus (Hypoth.), thalamus, caudate putamen (part of the striatum;

Caud.put.), pons, medulla, cerebellum (Cereb.), and the olfac-

tory bulb (Olf.bulb). We further isolated three regions that were

enriched with the corpus callosum (Corp.cal.), choroid plexus

(Chor.plx.), and the neurogenic subventricular zone (SVZ),

(Methods S1, section 1). We obtained a total of 1,770 samples

(885 samples from each hemisphere). Regions from the left

hemisphere were stored, whereas right hemisphere regions

were processed through a custom-built bulk RNA sequencing

(bulk-seq) pipeline (Figure 1B, STAR Methods). We achieved

robust tissue sampling with high RNA quality while minimizing

perfusion artifacts (Methods S1, section 1; median RIN21

of 9.45).

Post-quality control, we obtained 847 single-region transcrip-

tomes. Visualization in uniform manifold approximation and pro-

jection (UMAP) space separated samples by region (Figure 1C),

but not sex or age, concurring with deterministic hierarchical

clustering (Methods S1, section 2). However, samples segre-

gated transcriptionally by age within individual regions, high-

lighting the necessity for precise isolation of brain tissue to

resolve the subtle effect of aging on expression (Figure 1D).

To assess if isolated regions capture a given brain structure’s

transcriptome, we analyzed region-enriched genes (‘‘marker

genes’’; Table S1) in a publicly available mouse brain spatial

transcriptomics dataset,22–24 creating ‘‘signatures’’ 25 for each

region. Signature scores were distinctly elevated in areas corre-

sponding to the anatomical structures annotated in the Allen

brain reference atlas26 (Methods S1, section 3). Further, a signif-

icant decline with age in a signature score for activated neural

stem cells (aNSCs, based on single-cell data27) was observed

in the SVZ region, indicating a loss of aNSCs with age, which

is in agreement with diminished neurogenic capacity in aged
(E) C4b expression in selected regions. Black lines indicate smoothed gene ex

Mean ± SEM. Two-sided Wald test. ***padj < 0.001, **padj < 0.01, *padj < 0.05.

(F) Smoothed line plot displaying DEGs for pairwise comparisons. Positive (negat

significance in R2 pairwise comparisons were included.

(G) Heatmap of data in (F).

(H) Number of age-correlated genes, colored by regulation.

(I) Networks of the most connected genes (‘‘eigengenes’’) in selected regions.

(J) Chord diagram of genes shared in age-associated modules across regions. M

See also Figure S1.
mice27 (Methods S1, section 3). These findings affirm the quality

of our tissue isolation and bulk-seq workflow and demonstrate

the robust capture of region-specific transcriptomes across an-

imals. The data can be interactively explored at https://

twc-stanford.shinyapps.io/spatiotemporal_brain_map/.

Region identity is linked to expression dynamics
during aging
RNA-seq permits quantitative comparisons of aging rates8,19

based on gene expression shifts. For instance, we found sub-

stantial region-dependence in the magnitude and timing of

C4b expression (Figure 1E), a complement component and ma-

jor schizophrenia risk factor28 that is up-regulated in agedmice29

and models of neurodegeneration.30 Notably, recent single-cell

sequencing and spatial imaging studies revealed that the

composition of major cell types remains almost constant

throughout the agingmouse brain between 3 and 21months,31,32

thus the expression dynamics observed in bulk are unlikely to be

driven primarily by shifts in cell type abundance. In cases of sta-

ble cell populations and substantial replicate numbers, bulk

RNA-seq is particularly suitable to investigate subtle, yet robust

expression changes by taking advantage of well-established,

replicate-sensitive statistical approaches33 that currently do

not exist for single-cell data.34 Thus, we could use our temporally

resolved data to probe the per-region impact of aging on gene

expression, as this could help to identify structures with selective

vulnerability.

We performed pairwise-differential expression between the

3 months group and every subsequent age group to determine

when differentially expressed genes (DEGs) arise (referring

from heron to genes that change with age). We treated sex as

a covariate given the lack of significant interaction between

sex and age and similar expression changes during aging in

each sex (Figures S1A–S1E). A gene had to pass the statistical

cutoff in at least two comparisons to be classified as a DEG

(Figures 1E–1G). The general trend across regions indicated an

increase of DEGs over time plateauing around 21 months

(Figures 1F and 1G), though individual regions exhibited pro-

foundly differing trajectories of DEG accumulation (Figure 1F;

Table S1). For instance, the visual cortex showed a steady in-

crease of DEGs until late age, whereas the motor cortex already

exhibited significant perturbation at 12 months, with little addi-

tional increase until a jump at 21 months (Figures 1F and 1G).

By contrast, entorhinal cortex’s transcriptome appeared largely

refractory to the effects of age (Figures 1F and 1G). This agrees

with human MRI7 and microarray35 studies demonstrating that

the entorhinal cortex displays only mild alterations during cogni-

tive aging, despite exhibiting the first amyloid deposition in AD
pression. Differential expression compared with 3-month group is indicated.

ive) values represent up-regulated (down-regulated) genes. DEGs that reached

odules and associated genes are listed in Table S1.
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patients.36 Together, these results reveal the striking region- and

time-dependent nature of expression shifts during brain aging,

thus necessitating region-resolved quantification and analysis.

Notably, regions with the most profound and earliest shifts in

gene expression were the white matter-rich caudate putamen,

cerebellum, and corpus callosum, the latter showing a 10-fold in-

crease in the number of DEGs between 12 and 18 months.

To validate these results with independent analyses, we first

probed all genes for correlation with age (STAR Methods;

Table S1), thus taking all age groups into account (Figure 1H).

Regions differed in the number of age-correlated genes, con-

firming that the effect size of age depends on the region, and

the corpus callosum and cerebellum were the most impacted,

while the entorhinal cortex remained largely unaffected (Fig-

ure 1H). As a second validation, we performed weighted gene

co-expression network analysis (WGCNA)37 for each region

(STAR Methods; Table S1), clustering genes into modules. We

filtered for modules exhibiting significant association with age

and found that the number of modules differed between regions.

Agreeing with the above results, we found seven or more

modules in the corpus callosum and cerebellum, whereas we

detected no age-related modules in the entorhinal cortex

(Table S1). We compiled cell type and pathway enrichment for

each age-relatedmodule into reports for each region as resource

(https://twc-stanford.shinyapps.io/spatiotemporal_brain_map/).

Interestingly, we discovered in 10 regions at least one module

with increased expression over time that was enriched for micro-

glia- and inflammation-related genes (Figures 1I and 1J). Consis-

tent with these findings, we found a small, common set of DEGs,

including neuroinflammatory markers Fcgr2b, Ctss, and Cst738

in modules across regions, suggesting the presence of aminimal

group of co-regulated genes changing throughout the brain. In

summary, we found the results of three independent analyses

(pairwise tests, age correlation, and WGCNA) congruent,

demonstrating that the observed effects of aging on the tran-

scriptome are region-dependent.

A minimal gene set forms a common fingerprint of
brain aging
Although the vast majority of DEGs appeared to change only in

three or fewer regions, we found 82 genes that were differentially

regulated in 10 or more regions (Figures 2A and 2B; Table S1).

These were strongly enriched for up-regulated genes with

immune-modulatory functions (Table S1), including major histo-

compatibility complex class I (MHC-I)-mediated antigen presen-

tation, interferon-response, and complement cascade, as well

as regulators of microglia activity (Figure 2C) including Cd22,39

Trem2, and Tyrobp.40 Of the only 7 down-regulated genes in

this set, we found protein homeostasis genes Dnajb1, Hsph1,

and Ahsa1, as well as collagen synthesis gene P4ha13 (Fig-

ure 2B). We combined these 82 genes into a common RNA aging

signature to calculate their expression as a single ‘‘common ag-

ing score’’ (CAS; STAR Methods) for each mouse and region.

Although the CAS expectedly showed significant increases in

every region (Figures 2D and S2A), the shape and amplitude of

the trajectories varied profoundly. We employed linear models

to approximate these trajectories, using the slope of the linear

fit as ametric to comparatively assess the ‘‘CAS velocity’’ across
4120 Cell 186, 4117–4133, September 14, 2023
regions (Figures 2D and 2E). Of note, theCAS at baseline (i.e., the

offset of the linear fit) did not predict a region’s CAS velocity (Fig-

ure 2F). Our analysis revealed a gradient of velocities, with

cortical areas ranking last, at one-third of the velocity of the

corpus callosum, the ‘‘fastest’’ region (Figures 2G–2I). Other

white matter-rich areas, including the caudate putamen, also ex-

hibited high velocities, whereas hippocampus, thalamus, and

hypothalamus ranked below average. The median CAS across

all regions associated with the animals’ chronological age (Fig-

ure S2B). Yet, the regions’ differing velocities resulted in

increased per-animal variance, indicating that the transcriptional

state of this gene set becomes profoundly desynchronized

across the brain. Importantly, we found no association between

the CAS velocity and the regions’ cell composition at young age

as quantified in a brain-wide in situ single-cell dataset41 (Fig-

ure 2J; Methods S2, section 1). This suggests that the heteroge-

neous CAS velocities are unlikely to result from cell proportions

differing across regions.

When we examined the CAS trajectories for the interval be-

tween 3 and 21 months, we observed a moderate but significant

CAS acceleration in females (Figures 2I, S3A, and S3B), with the

hypothalamus exhibiting themost pronounced acceleration (Fig-

ure S3B). Although overall age-related expression changes were

well correlated between both sexes (Figure S3C; p value for

Fisher’s exact test < 2.2 3 10�16), genes related to lipid

metabolism, stress response, and unfolded protein response,

includingCAS genesRbm3 andCirbp,42 were stronger regulated

in males (Figures S3D and S3E). By contrast, females exhibited a

more accentuated regulation of neuroinflammatory markers

(including Gfap) and antigen-presentation genes (Figure S3F),

as well as several CAS genes related to immune response. In

line with this, we found Cish, a known regulator of T cell immune

response increasing in females,43,44 being the only gene exhibit-

ing significant, opposite regulation in both sexes. Critically, the

female-specific regulation of pro-inflammatory genes was not

observable in other regions with similar CAS slopes (Figure S3F).

These findings are in line with human studies reportingmore pro-

nounced expression of immune-related genes in the hippocam-

pus and cortex of aged women.35,45 Of note, adenomas in the

hypothalamus-adjacent pituitary gland can develop at high fre-

quency in female C57BL/6J mice older than 20 months of

age.46 Since we did not record adenomas in our study, it is

possible that this phenomenon could contribute to the acceler-

ated aging patterns observed here. Our data could advance

the understanding of several sexual dimorphisms observed in

the brain, including the higher age-specific risk of dementia

among women,47 given the hypothalamus’ critical role in regu-

lating reproduction, development, and metabolism.48

Fiber tracts are foci of accelerated brain aging
Bulk-seq data may obscure shifts in sub-structures within re-

gions, like a specific cortical layer. To verify our CAS analysis,

we sought a method that could simultaneously examine multiple

regions at high resolution. To this end, we performed spatial tran-

scriptomics (10X Visium) of the brain, isolating coronal sections

from an independent cohort of male mice aged 6, 18, and

21 months (Figure 3A). Using a clustering-based approach we

annotated the regional identity of Visium spots (Figures S4A

https://twc-stanford.shinyapps.io/spatiotemporal_brain_map/


Figure 2. Common gene signature identifies regions with accelerated aging

(A) Bar graph indicating the number of regions in which a DEG was detected (Table S1).

(B) Region-wise expression changes for selected genes with shifts in 10 of 15 collected regions.

(C) Representative gene ontology (GO) analysis of 82 genes forming the CAS. Lengths of bars represent negative ln-transformed padj using Fisher’s exact test.

Colors indicate gene-wise log2 fold changes in the corpus callosum. Table S1 contains full results list.

(D) CAS trajectories of selected regions. Insert indicates trajectories for males and females in the hypothalamus.

(E) CAS trajectories of all regions approximated via LOESS and linear regression.

(F) Offset and slope comparison for linear models.

(G) Slope of linear regressions in (D), colored by slope. Mean ± 95% confidence intervals. Two-sided Tukey’s HSD test. Bolded regions are highlighted in (H).

(H) Mouse brain cross-section, with regions colored by CAS linear slopes.

(I) Slope of linear regression across all brain regions, colored by sex. Mean ± 95% confidence intervals. Two-sided Tukey’s HSD test. The highest (least sig-

nificant) p value is indicated. ***padj < 0.001, **padj < 0.01, *padj < 0.05.

(J) Correlation of the abundance of major glia cell types (as measured by Shia et al.41) with the regions’ respective CAS slopes. Significance tested through

Spearman correlation and linear regression.

See also Figures S2 and S3.
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and S4B; Table S1), identifying them as belonging to the hippo-

campus, cortex, thalamus, hypothalamus, striatum, choroid

plexus, and white matter fiber tracts (Figures 3B and S4C–

S4F). Our data demonstrated robust capture of the same regions

across age groups and individuals (Figures S4G–S4L), permit-
ting a comparison of DEGs found in bulk-seq with Visium data

(Table S1). We confirmed a more pronounced regulation of

DEGs in the white matter cluster (equivalent to the dissected

corpus callosum region) compared with the cortex cluster

(equivalent to the motor cortex region), This includes several of
Cell 186, 4117–4133, September 14, 2023 4121



Figure 3. Spatially resolved CAS detects accelerated aging in white matter tracts

(A) 10X Visium experiment overview. Brain tissue was collected from an independent male C57BL/6J mouse cohort (n = 2 mice; 6, 18, and 21 months).

(B) Spatial transcriptome data, colored by cluster-based annotation. Labels represent region-level annotation. Labels represent region-level annotation ac-

cording to Figure S4. Complete data description and abbreviations are in Figure S4.

(C) Comparison of bulk-seq and Visium differential expression results in selected regions. DEGs found in both datasets are shown, with CAS genes highlighted.

The number of overlapping DEGs in each quadrant is indicated in blue.

(D) Spatially resolved expression of Trem2 across age. Violin plots represent the expression in white matter- and cortex-associated spots, split by replicates.

(E) Spatial representation of CAS. Spots with values R0 are shown.

(F) CAS across spatial clusters of selected regions. Red line indicates linear regression fit.

(G) Comparison of CAS slopes for linear models in bulk-seq and Visium data, colored by region. Corpus callosum, caudate putamen, and motor cortex regions

were chosen to represent white matter, striatum, and cortex, respectively. Significance tested through Spearman correlation and linear regression.

***padj < 0.001, **padj < 0.01, *padj < 0.05.

See also Figure S4.
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the 82 CAS genes (Figure 3C; Table S1) such as Trem2 (Fig-

ure 3D). Calculating CAS for each Visium spot identified a clear,

spatially defined increase of the score along the white matter

tracts, encompassing the corpus callosum and other fiber tract

sub-structures (Figures 3E and 3F). In the cortex, however, we

observed only a modest increase in CAS. Generally, CAS veloc-

ities determined by bulk-seq and spatial transcriptomics were

well correlated (Figure 3G), confirming vastly differing aging ve-

locities between proximal regions in situ.

Heterogeneous velocity of CAS is encoded by glial
transcripts
We aimed to quantify the activity of CAS genes at the single-cell

level to pinpoint the cell type(s) influencing the heterogeneous

expression dynamics across brain regions. We chose the ante-

rior hippocampus given its intermediateCASvelocity (Figure 2G),

utilizing frozen punches from the left hemispheres of the bulk-

seq cohort (Figure 4A). Single-nuclei sequencing (nuc-seq)

yielded all major cell types, with no age- or sex-related shifts in

cell composition. Microglia exhibited the highest baseline CAS,
4122 Cell 186, 4117–4133, September 14, 2023
which aligns with many CAS genes being known immune-

response genes (Figures 2B and 2C). Although CAS displayed

a significant increase in all cell types (Figure 4B), microglia ex-

hibited the most accentuated increase (Figure 4C), followed by

mature oligodendrocytes, brain endothelial cells (BECs), astro-

cytes, and oligodendrocyte progenitor cells (OPCs).

Upon closer examination of the 82 genes, it was evident that

the CAS couldmirror aging dynamics in several cell types beyond

microglia through cell type-specific or selective gene expression

shifts (Figure 4D), including Gfap (astrocytes), C4b (astrocytes

and mature oligodendrocytes; Methods S2, section 2), Gpr17

(OPCs), and H2-Q7 (BECs; Methods S2, section 3). Notably, ag-

ing could trigger the expression of genes undetected at young

age. For instance, C4b, mostly detected in young astrocytes,

became detectable and increased foremost with age in mature

oligodendrocytes (Methods S2, section 2). Similarly, expression

ofH2-Q7 only became detectable in BECs with old age (Methods

S2, section 3). We validated our findings in an independent data-

set of publicly available single-cell RNA-seq (scRNA-seq) data

from young and old mice’s SVZ.27 Though generated using a



Figure 4. Aging in glia and endothelial cells is the major contributor to CAS increase

(A) Nuc-seq experiment overview. Nuc-seq of anterior hippocampus from samemice used for bulk RNA-seq (n = 4; 3 and 21months). UMAP of nuclei populations

(n = 36,339).

(B) CAS across hippocampal cell types. p values from two-tailed t test on per-replicate median of CAS. ***padj < 0.001, **padj < 0.01, *padj < 0.05.

(C) CAS slope of linear regressions in (B). Two-sided Tukey’s HSD test. The highest (least significant) p value is indicated.

(D) Expression of CAS genes Gfap, C4b, Gpr17, H2-Q7. Additional details in Methods S2, sections 2 and 3.

(E) Meta-analysis of scRNA-seq data (from Tabula Muris Consortium19) of microglia from different brain regions. UMAP of all cell populations (n = 6,373).

(F and G) CAS and Trem2 expression acrossmicroglia from different brain regions. (MAST, Benjamini-Hochberg correction; false discovery rate [FDR] < 0.05 and

logFC > 0.2). ***padj < 0.001, **padj < 0.01, *padj < 0.05.
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different cohort and method, the CAS increase was most pro-

nounced in microglia, consistent with our data (Methods S2, sec-

tion 4). CAS also significantly increased in aNSCs, but a small cell

count at 28 months (under 50 per animal) complicated robust

CAS calculations. Thus, differences in CAS velocity between re-

gions predominantly reflect age effects in non-neuronal cells,

with microglia having the strongest contribution.

Transcriptional aging of microglia is region dependent
We aimed to discern varying CAS dynamics between microglia

from regions with fast or slow CAS velocity. For this, we analyzed
Smartseq2 scRNA-seq data from the Tabula Muris Consortium

(Figure 4E), which contains comparable numbers of microglia

from freshly isolated cerebellum (high velocity), striatum (equiva-

lates to caudate putamen, high velocity), hippocampus (medium

velocity), and cortex (low velocity). Smartseq2, due to its efficient

per-cell transcript capture rate, is particularly apt for examining

subtle aging-related transcriptional effects.49–51 In agreement

with our bulk-seq results, the CAS increased in microglia across

regions, though with greater magnitude in the cerebellum and

striatum, followed by the hippocampus and cortex, respectively

(Figure 4F). These shifts were consistent across biological
Cell 186, 4117–4133, September 14, 2023 4123



Figure 5. Neuronal transcripts encode region-specific expression shifts

(A) UpSet plot showing regional specificity of DEGs. Unique gene sets were used to construct region-specific aging signatures.

(B) Trajectories of caudate putamen-specific aging score in selected regions.

(legend continued on next page)
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replicates (Methods S2, section 5) and were also reflected on the

level of individual CAS genes, like Trem2 (Figure 4G). Notably,

there was no detectable CAS difference among microglia at

young age across the striatum, hippocampus, and cortex,

whereas the cerebellum-derived microglia exhibited a slightly

higher baseline CAS. Consistent with our data, aged mice’s mi-

croglia isolated fromwhitematter exhibited significantly elevated

CAS compared with those derived from gray matter51 (Methods

S2, section 5). Further, we meta-analyzed a well-powered bulk

microarray dataset of microglia isolated from cerebellum, stria-

tum, hippocampus, and cortex,52 of mice aged 4, 12, and

22 months. We identified more DEGs with age in the cerebellum

and striatum, together with a more pronounced up-regulation of

CAS genes (Methods S2, section 5), particularly in the period of

12–22 months.

In conclusion, CAS velocities observed in bulk-seq and Visium

data partly represent microglia that exhibit region-specific ag-

ing rates.
Neuronal transcripts encode region-specific expression
patterns
Since CAS genes represent only 1.5% of all DEGs (Figure 2A;

Table S1), we hypothesized that the remainder could represent

region-specific expression shifts. We first compared age-related

DEGs across mouse organs to construct organ-specific aging

signatures (Methods S3, section 1). The identification of specific

signatures in functionally distinct organs led us to investigate

whether individual brain regions display a similar degree of spec-

ificity during aging. The number of region-specific DEGs varied

significantly (Figure 5A), which we utilized to build aging signa-

tures for each region (Figures 5B and 5C; Methods S3, section

2). As exemplified for the caudate putamen, we found that

most region-specific signatures generally increased with age

predominantly in the region they were based on (Figures 5B–

5D; Methods S3, section 2). Thus, dozens to hundreds of genes

in the brain are regulated in a region-specific or -selective

manner, revealing highly compartmentalized effects of aging

within a single organ.

Signature genes appeared to be functionally connected, as

exemplified by the caudate putamen-specific signature, which

was enriched for down-regulated mitochondrial processes and

up-regulated cell adhesion and lipid binding functions (Figure 5E;

Table S1). We analyzed nuc-seq data from the left-hemisphere

punches of the anterior hippocampus (Figure 4A) and caudate

putamen (Figure 5F), where we captured non-neuronal cell types

as well as striatum-specific D1- and D2-type medium spiny neu-
(C) Slope of linear regressions in (B), colored by slope. Mean ± 95% confidence

(D) Score changes for region-specific signatures relative to 3 months. Statistical

(E) Representative GO enrichment for 177 DEGs unique to caudate putamen. Ta

(F) Nuc-seq experiment overview of left hemisphere regions from same mice use

(G) Single-nuclei dispersion scores vs. log2-transformed expression ratios for dif

(H) Slope of cell-type-wise changes with age for caudate putamen-specific signat

± SEM. Two-sided Wald test.

(I and J) Bulk and cell-type-wise and expression changes for Chrm3. (MAST, Benj

***padj < 0.001, **padj < 0.01, *padj < 0.05.

(K) Slope of cell-type-wise changes with age for hippocampus-specific signature

(L and M) Bulk and cell-type-wise and expression changes for Unc5d. Additiona
rons (D1 and D2 MSNs, respectively). Mapping signature genes

like Fgf16, S100a10, and Fabp4 (Methods S3, section 2) to

distinct cell populations (Figure 5G; Table S1; STAR Methods)

suggested that bulk tissue can indeed capture the expression

dynamics of specific cell subsets. We calculated several re-

gion-specific signature scores for each cell type at young and

old age. We found a distinct increase of the caudate putamen-

specific signature in D1 and D2 MSNs, which was not seen

with signatures from other regions (Figures 5H and 5J, Methods

S3, section 2). In comparison, dentate gyrus granule cells of the

hippocampus exhibited a distinct increase of the hippocampus-

specific signature (Figure 5K), and we found respective regula-

tion of signature genes such as axon-guidance receptor

Unc5d53 and transcription factor Onecut1 (Figures 5L and 5M;

Methods S3, section 3). Notably, granule neurons are highly

abundant in the cerebellum54 yet the hippocampus-specific

signature, as well as expression of Unc5d or Onecut1, exhibited

no age-related change in the bulk data of the cerebellum. Our

approach could thus identify aging signatures of a given cell

type occurring selectively in a specific region.

Finally, we explored whether the biological processes associ-

ated with signature genes could indicate differential transcrip-

tional activity across whole pathways or organelles. We

observed significant down-regulation of mitochondria-related

genes in the caudate putamen, including electron transport

chain subunits, which could indicate impaired mitochondrial

function (Figure 5E). We identified in this region a global, gradual

down-regulation of all genes coding for mitochondria-related

proteins (Methods S3, section 3), and a corresponding mito-

chondrial signature dropped significantly in aged D2 MSNs,

mature oligodendrocytes, and astrocytes. This was not detected

in cell types from other regions (Methods S3, section 2). This

specific down-regulation of mitochondrial processes in aged

striatum could help to explain the selective vulnerability to mito-

chondrial toxins and stresses in the striatum of old animals.55,56

In conclusion, we discovered extensive region-specific tran-

scriptional signatures of aging, largely encoded by expression

shifts in distinct neuronal subpopulations reflecting a region’s

specialization.
Rejuvenating interventions act on distinct regions and
cell types affected during normal aging
Given the substantial region-specific expression changes during

normal aging, we wondered if interventions known to stave off

age-related pathologies may also act regionally. We performed

region-resolved bulk-seq on the brains of 19-month-old mice
intervals.

analysis in Methods S3, section 2.

ble S1 contains full results list.

d for bulk RNA-seq (n = 4; 3 and 21 months).

ferent regions. Region-specific score genes are highlighted.

ure. D1 and D2Medium spiny neuron (MSN) populations are highlighted. Mean

amini-Hochberg correction; false discovery rate [FDR] < 0.05 and logFC > 0.2).

.

l details in Methods S3, section 2.
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following either 4 weeks of acute dietary restriction (aDR), a well-

established nutritional intervention,57,58 or recurring injections of

young mouse plasma (YMP),59 a paradigm to administer circula-

tory factors found at young age. Both aDR and YMP have previ-

ously been shown to exert molecular, structural, and cognitive

improvements even at this late age.58,59 Understanding the tra-

jectories of region-specific transcriptional shifts in response to

‘‘rejuvenating’’ interventions, may help to decipher the mecha-

nism mediating their effects.

For the dietary intervention, 19-month-old female mice were

either treated with 4 weeks of aDR or ad libitum (AL) feeding

(n = 4–5 female C57BL/6JN; Figure 6A). The 25% aDR paradigm

(i.e., food reduction to 75% of the AL group) resulted in the ex-

pected metabolic shifts, marked by weight loss (Figures S5A

and S5B) and induction of well-recognized expression changes

in the liver, albeit to a milder degree than those observed in

studies employing chronic DR over years57 (Figures S5C–S5E).

For the plasma intervention, we profiled brains of 19-month-

old male mice receiving recurring injections of either YMP or

PBS (n = 3–4 male C57BL/6JN; Figure S5F). Critically, the result-

ing 229 single-region transcriptomes clustered well with the

bulk-seq data from the aging cohort (Figure S5G), suggesting a

robust sampling of regions across experimental cohorts.

Remarkably, aDR and YMP exerted distinct expression

changes across the brain (Figures 6B–6D and 6F–6H). aDR

was primarily marked by differential regulation in the olfactory

bulb, cerebellum, and cortical areas, as well as fewer expression

changes across all regions (Figures 6A–6C). DEGs under aDR

exhibited little overlap with DEGs occurring during aging

(Figures S5H–S5J), and the CAS remained unaffected across

the brain (Figures 6D and S5K). In several regions, particularly

the cerebellum, we found a strong functional enrichment for

aDR-induced genes related to the regulation of the circadian

clock. A set of 23 genes, including three direct members of the

circadian clock (Cry1, Usp2, and Ciart) and other genes with

cycling expression,60 was differentially regulated in at least

four regions (Figures 6C and 6J). We utilized these 23 genes to
Figure 6. Young plasma injection and acute dietary restriction trigger

(A) Experiment overview. Aged female mice (n = 4–5) either underwent acute dieta

brain collection and bulk-seq analysis on 15 regions.

(B) The number of DEGs, split by region and regulation.

(C) Bar graph showing the regions where a particular DEG was detected. Refer t

(D) CAS shifts in response to aDR across selected regions. One-tailed t test. ***p

(E) Experiment overview. Aged male mice (n = 3–4) were injected with either you

(F–H) Similar to (B)–(D) for YMP experiments.

(I) Representative GO analysis of DEGs with shifts in cerebellum due to aDR. Ta

(J) Region-wise expression changes in aDR for 24 genes with shifts in at least fo

(K) Experiment overview. Nuc-seq of whole hippocampus from female C3B6F1mi

all nuclei is depicted (n = 69,253).

(L) Boxplot representation of common aDR scores in four cell types. Two-tailed

(M) Similar to (I) but for YMP-induced DEGs in SVZ.

(N) UMAP representation of single-cell SVZ data, with scores for YMP signature. C

in response to YMP). Histogram of score distribution is depicted on the right-han

(O) Composition of cell types and age groups in cells showing the highest YMP

(P) YMP score slope of linear regressions against age, colored by cell

***padj < 0.001, **padj < 0.01, *padj < 0.05.

(Q) Boxplot representation of scores for aNSC aging in SVZ and hippocampus in Y

See also Figure S5 and S6.
construct an aDR signature, which was robustly and evenly

induced across all brain regions examined (Figures S6A and

S6B). To map out the cell types driving the aDR signature, we

performed nuc-seq on whole, frozen hippocampus tissue of

24-month-old female mice that had been fed AL or subjected

to 40% aDR since 20 months of age (Figure 6K; n = 3–4 female

C3B6F1; cohort previously described in Hahn et al.57 and Kaeser

et al.61). The signature was specifically up-regulated under aDR

in mature oligodendrocytes, astrocytes, microglia, and OPCs

but unaffected in any neuronal subpopulation (Figures 6L and

S6C–S6E). Thus, aDR induces a brain-wide transcriptional pro-

gram acting on the same cell types affected by the CAS, albeit

through molecular pathways orthogonal to those changing dur-

ing aging.

By contrast, YMP caused region-selective expression shifts,

affecting the SVZ in particular (Figures 6E–6H). Here, we

observed profound up-regulation of pathways related to stem

cell differentiation and neuronal maturation (Figure 6M). We

mapped a signature representing all up-regulated genes under

YMP to single-cell data of the SVZ,27 where it demarcated neuro-

blasts, quiescent, and aNSCs, which were primarily found in

young mice (Figures 6N and 6O). SVZ cells from aged mice

decreased the YMP signature, and, conversely, age-related

DEGs found in aNSCs were down-regulated in YMP-treated

mice (Figures 6P and 6Q). Thus, YMP injection reactivates an

expression pattern in the neurogenic lineage that becomes

down-regulated with age. In addition to effects on the SVZ,

YMP caused significant down-regulation of genes like C4b,

B2m, Trem2, or Gfap in selected regions and led to a significant

CAS reduction in caudate putamen, hypothalamus, SVZ, and

several cortical areas (Figures S5I, S5L, and S5M).

In summary, we uncovered that the rejuvenating interventions

aDR and YMP act in profoundly different, region-specific man-

ners. Although aDR instigates a reprogramming of genes related

to the circadian clock across all glia, YMP causes a selective

reversal of age-related expression signatures, particularly in

the neurogenic lineage of the SVZ.
distinct spatial gene expression changes in the aged brain

ry restriction (aDR) for 5 weeks or continued with ad libitum (AL) feeding before

o Table S1 for the list of DEGs.

adj < 0.001, **padj < 0.01, *padj < 0.05.

ng mouse plasma (YMP) or PBS over 4 weeks.

ble S1 contains full results list.

ur of the collected regions.

ce undergoing AL-to-aDR dietary switch at 20months. UMAP representation of

t test on per-replicate median.

ells are coloredwith scores for YMP signature (representing DEGs up-regulated

d side. Signature genes can be found in Table S1.

scores.

type. Two-sided Tukey’s HSD test. Mean ± 95% confidence intervals.

MP- or PBS-injected mice. Two-tailed t test on per-replicate median of score.
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Aging results in region-specific expression changes of
genes associated with human diseases
Region-specific expression of a gene could influence not just the

aging of the brain but also susceptibility to disease and selective

vulnerability of regional cell populations. This is due to differ-

ences in basal gene expression levels across the young adult

brain and trajectories of age-related changes. This is demon-

strated with the example of the C4b gene, a key genetic risk fac-

tor for schizophrenia.28 The motor cortex and hippocampus, for

instance, show up to a 3-fold difference in basal expression of

C4b at 3 months of age, with age-related increases of up to

10-fold observed from the least affected visual cortex to the

corpus callosum (Methods S2, section 2). If such region-specific

differences and aging trajectories exist in human brains, it could

likely impact the pathogenesis and clinical manifestations of a

disease.

To explore this concept in the context of neurodegenerative

diseases such as AD or PD, we analyzed the expression of genes

linked to autosomal dominant forms of disease or genes linked to

the risk of developing sporadic forms of disease. We ranked re-

gions based on the highly variable expression of either Apoe,

Trem2, Plcg2, or Scna (a-synuclein) at 3 months (Figures 7A–

7D). Crucially, the expression distribution across the brain for

each gene was substantially rearranged in older animals due to

region-specific differential regulation. To systematically assess

the regulation of disease risk-linked genes, we assembled lists

of genome-wide association studies (GWASs) genes for AD or

PD and investigated whether they were significantly enriched

among age-related DEGs of a given region (Table S1).62,63

Each disease-associated gene set exhibited a different enrich-

ment pattern (Figures 7E–7G) and a varying number of associ-

ated genes (Figures 7H and 7I). AD-related genes, including

Apoe, Ms4a6d, and Plcg2,64 were part of DEGs that were co-

regulated in a small cluster of three regions: the choroid plexus,

corpus callosum, and pons (Figure 7E). Conversely, PD-related

genes, like the neuroprotective gene Ip6k2,65 were distributed

across several regions with limited overlap (Figure 7F). Of note,

the substantia nigra, a major region where PD typically mani-

fests, was not quantified in our study.

We also analyzed GWAS genes for multiple sclerosis (MS) due

to observed age-related effects in white matter-rich regions.

These genes had significant associations with DEGs from nine

different regions that fell into two clusters, indicating two dispa-

rate subsets. One cluster consisted of regions including the

corpus callosum and cerebellum, that up-regulated a shared

set of inflammation-related genes such as Stat3, Ly86, and Irf8,

all part of the CAS (Figure 7G). This hints at similarities between
Figure 7. Interplay of region and age determines the expression of dis

(A–D) Bulk expression for (A) Apoe, (B) Trem2, (C) Scna (a-synuclein), and (D) Plcg

arranged by descending order of mean expression at young age. Mean ± SEM.

(E–G) Enrichment analysis of region-resolved DEGs for human GWAS variants for

relative composition of disease-associated DEGs with respect to their regulation

Order of regions results from hierarchical clustering on a pairwise Jacquard distan

sided Fisher’s exact test. ***padj < 0.001, **padj < 0.01, *padj < 0.05.

(H–J) Number of DEGs per region that are homologs of human GWAS variant for A

or other (DEG in 2 or more but fewer than 10 regions).

See also Figure S7.
the pathophysiology of inflammation and demyelination associ-

ated with MS and the accelerated aging observed in white mat-

ter-rich areas. The visual andmotor cortex formed a second clus-

ter, exhibiting even numbers of up- and down-regulated MS

genes. This supports evidence of transcriptional shifts (e.g., of

Cbln2) in cortical areas that can occur far away from the actual le-

sions66 and highlights the need to broadly study regional patterns

of gene expression to understand the role of MS-associated

genes. To better contextualize the biological relevance of the

observed expression changes,we further compared the up-regu-

lation of GWAS homologs with their baseline expression across

regions (Figures S7B and S7C; STARMethods), which confirmed

that age-related differential expression in specific regions led to a

significant redistribution of where in the brain a given GWAS ho-

molog was predominantly expressed (Figures S7C–S7E).

Our data demonstrate that genetic risk factors linked to three

major neurodegenerative diseases are affected by age in a re-

gion-selective manner. Although we cannot predict whether

the directionality of the regulation itself has a biological conse-

quence, this region-specific differential regulation of such genes

could be an additional factor modulating disease risk.

DISCUSSION

The advent of single-cell technologies and cell dissociation

methods have enabled the exploration of an ever-increasing

number of cell populations in the brain,67 allowing for cell type-

specific characterization of gene expression during aging.9 The

interplay between cell type and regional niche during aging is,

however, yet to be more deeply understood. Our results under-

score the importance of region identity in modulating gene

expression dynamics in the context of aging and neurodegener-

ation. Future studies should probe if these diverse expression

patterns lead to shifts in the proteome or bring about functional

changes in neuronal activity and plasticity. Given comparable

observations that astrocytes exhibit stronger age-related

expression changes in striatum and cerebellum as compared

with cortical areas,32,68,69 it is likely that other glial cells

contribute to the heterogeneous CAS increase at the bulk level.

Further exploration of the CAS in other non-neuronal cell types

could clarify whethermicroglia actively drive the regional expres-

sion dynamics described here or if they simply respond to cues

from other cell types in the region.

Our data reveal that certain brain regions are selectively

vulnerable to aging, with white matter fiber tracts exhibiting a

particular sensitivity. These areas, dense with myelinated axons

and myelinating cells, form the basis of neurotransmission
ease-variant homologs

2 at 3 and 26 months of age, represented with only male samples. Regions are

AD, PD, andMS, with associated genes listed in Table S1. Fold enrichment and

are indicated. One-sided Fisher’s exact test with hypergeometric distribution.

ce matrix. Overlaps with a Jaccard indexR0.25 are indicated with an arc. One-

D, PD, and MS. Colors group the genes into CAS DEGs, region-specific DEGs,
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across brain regions.70 The strong activation of immune- and

inflammation-related genes, and differential expression of re-

myelination regulators like Gpr1771,72 suggests that the homeo-

stasis of this region is compromised at old age potentially

affecting myelin sheath integrity and impairing axonal signal

transmission as an early event in brain aging. In line with this,

rejuvenation oligodendrogenesis in aged mice via FGF17 im-

proves long-term memory consolidation, demonstrating a

causal role of compromised myelin on cognition.73

We found evidence that aDR induces brain-wide reprogram-

ming of genes associated with circadian rhythmicity, indepen-

dent of feeding time (C57BL/6JN were fed in the afternoon and

C3B6F1 fed in the morning57). This aligns with recent findings

that the lifespan-extending effects of DR are dependent on a

shift in circadian rhythm.74–76 Future work should investigate

how altered circadian rhythmicity impacts cell function and

why only glia, not neurons, are affected. Conversely, YMP ap-

peared to directly reverse age-related expression shifts in

regions near the ventricles, which are highly permissive for pe-

ripheral plasma proteins.77 We provide evidence that YMP spe-

cifically reverses aging signatures of the neurogenic lineage,

indicating restoration of adult neurogenesis that should be as-

sessed specifically with cell cycling tracing assays.78

Our findings strongly support the notion that the impacts of ag-

ing on brain function are region-specific. This may explain the

regional vulnerability across different diseases and the varied

manifestations of neurodegeneration at the individual level. We

demonstrate that key genetic risk genes are differentially

expressed in a region-specific manner, potentially locally

amplifying or attenuating their impact on disease pathways.

Importantly, our findings also suggest that aging may drive

dysfunction in brain regions that are not affected by classical

pathological hallmarks. The translation of these findings to hu-

mans may serve as a new brain cartography leading to novel

treatment strategies and interventions.

Limitations of the study
Because region-specific and age-related changes in gene

expression may be distinct for each species, the conclusions

drawn here from mouse data may not be translatable in their en-

tirety to humans. The analysis of our single-nuclei RNA-seq data

computationally pools animals of the same age and cell type and

thus was not analyzed in a replicate-sensitive manner, and the

presence of pseudo-replication effects cannot be excluded.

We also combined sexes for most of our analyses, potentially

masking subtle sex-specific gene expression differences. Relat-

edly, limitations in mouse availability for this study resulted in the

two oldest ages being profiled only in male mice. We suggest

further interrogation of potential sex differences of murine brain

aging late in life. Lastly, determining the exact distribution of ma-

jor cell types remains a challenge in the field, preventing us from

fully eliminating the possibility that baseline differences in abun-

dance play some role in detected aging effects.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

2,2,2-Tribromoethanol (Avertin) Sigma Aldrich Cat# T48402-100G

UltraPure� 0.5M EDTA, pH 8.0 Thermo Fisher Scientific Cat# 15575020

PBS, pH 7.4 Thermo Fisher Scientific Cat# 10010049

Slide-A-Lyzer� Dialysis Cassettes, 10K MWCO, 3 mL Thermo Fisher Scientific Cat# 66380

VWR brand, razor blades, 0.009’’ VWR Cat# 55411-050

Miltex� Disposable Biopsy Punches

with Plunger System 1.5mm

AliMed Cat# 98PUN6-2

Miltex� Disposable Biopsy Punches

with Plunger System 2mm

AliMed Cat# 98PUN6-3

0.1% sodium dodecyl sulfate Teknova Cat# S0180

EZ Prep lysis buffer Sigma Aldrich Cat# NUC-101

UltraPure� BSA Thermo Fisher Scientific Cat# AM2618

Hoechst 33342, 10 mg/mL Solution in Water Thermo Fisher Scientific Cat# H3570

Recombinant RNase Inhibitor Takara Cat# 2313B

Critical Commercial Assays

RNeasy 96 Kit Qiagen Cat# 74181

Qubit� 1X dsDNA HS Assay Kit Thermo Fisher Scientific Cat# Q33231

Quant-iT� dsDNA Assay Kit, high sensitivity Thermo Fisher Scientific Cat# Q33120

Illumina Tagment DNA Enzyme and Buffer large Kit Illumina Cat# 20034198

Agencourt AMPure XP, 60 mL Beckman Coulter Cat# A63881

SMARTScribe� Reverse Transcriptase Takara Cat# 639538

KAPA HiFi HotStart ReadyMix PCR Kit Roche Cat# 07958935001

Visium Spatial Tissue Optimization Reagents Kit 10X Genomics Cat# 1000193

Visium Spatial Gene Expression Reagent Kit 10X Genomics Cat# 1000184

Chromium Single Cell 3’ GEM & Gel Bead Kit v3.1 10X Genomics Cat# 1000121

Chromium Single Cell 3’ Library Construction Kit 10X Genomics Cat# 1000121

Deposited Data

scRNA-seq of SVZ Dulken et al.27 Bioproject:PRJNA450425

10X Sagittal Visium Dataset Anterior https://www.10xgenomics.com/

resources/datasets/mouse-brain-

serial-section-1-sagittal-anterior-

1-standard-1-0-0

10xgenomics.com:

V1_Mouse_Brain_Sagittal_Anterior

10X Sagittal Visium Dataset Posterior https://www.10xgenomics.com/

resources/datasets/mouse-brain-

serial-section-1-sagittal-posterior-

1-standard-1-0-0

10xgenomics.com:

V1_Mouse_Brain_Sagittal_Posterior

10X Coronal Visium Dataset https://www.10xgenomics.com/

resources/datasets/mouse-brain-

section-coronal-1-standard-1-0-0

10xgenomics.com:

V1_Adult_Mouse_Brain

SS2 scRNA-seq of grey/white matter microglia Safaiyan et al.51 GEO:GSE166548

Bulk-RNAmicroarray of microglia from various regions Grabert et al.52 GEO:GSE62420

SS2 scRNA-seq of microglia from various regions Tabula Muris Consortium19 GEO:GSE109774

Bulk-seq of brain regions (aging) This paper GEO:GSE212336

Nuc-seq of the mouse hippocampus and

caudate putamen at young and old age

This paper GEO:GSE212576

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Spatial transcriptomics of the mouse

brain across three age groups

This paper GEO:GSE212903

Bulk-seq of brain regions (rejuvenation) This paper GEO:GSE227689

Nuc-seq of the mouse hippocampus

under dietary restriction

This paper GEO:GSE227515

Experimental Models: Organisms/Strains

C57BL/6JN NIA N/A

C57BL/6J Jackson Laboratory 000664

C3B6F1 Max-Planck-Institute for

Biology of Ageing

N/A

Oligonucleotides

SS2 Oligo-dT30VN: AAGCAGTGGTATCAACGCAG

AGTACTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

Integrated DNA Technologies N/A

Software and Algorithms

Custom analysis software This paper https://github.com/OliInTheValley/

SpatioTemporal_Analysis
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RESOURCE AVAILABILITY

Lead contact
Requests for resources and reagents should be directed to the lead contact, Tony Wyss-Coray (twc@stanford.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The sequencing data have been deposited at Gene Expression Omnibus repository and are publicly available as of the date of

publication. Publicly available datasets were obtained from the following repositories: BioProject, Gene Expression Omnibus

and 10X Genomics’ public resources. DOIs are listed in the key resources table.

d All original code has been deposited at https://github.com/OliInTheValley/SpatioTemporal_Analysis and is publicly available as

of the date of publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animal husbandry and organ collection
For Bulk-seq and nuc-seq, male and female C57BL/6JN mice were shipped from the National Institute on Aging colony at Charles

River. 5-6 male and 5 female mice were used for each 3, 12, 15, 18, and 21months group, while only 5 and 3male mice were used for

the 26 and 28 months groups, respectively. For the 10X Visium experiments, aged C57BL/6J mice (000664, Jackson Laboratory)

were shipped from Jackson Laboratory. 2 male mice/age were used for the 6, 18, and 21 months groups. All mice of the aging

and aDR cohorts were housed in cages of 2-3 mice at the Stanford ChEM-H animal facility under a 12 h/12 h light/dark cycle at

67–73 �F and provided with food and water ad libitum. Mice were housed in the ChEM-H animal facility for one month before eutha-

nasia, except for mice older than 18months, which were housed at the ChEM-H animal facility beginning at 18 months. Takedown of

the bulk- and nuc-seq cohort was conducted between 10:00am-12:00pm over four days. Takedown of mice for 10X Visiumwas con-

ducted between 10:00am-10:15am on a single day. Age groups and sexes were rotated through over the duration of the takedowns

to average out the impact of takedown time and day. After anaesthetization with 2.5% v/v Avertin, �700ul blood was drawn via

cardiac puncture before transcardial perfusion with 20 ml cold PBS. The brain was immediately removed and snap-frozen by sub-

merging for 60 seconds in liquid nitrogen-cooled isopentane. Brains were stored at -80�C until further processing. All animal care and

procedures complied with the Animal Welfare Act and were in accordance with institutional guidelines and approved by the institu-

tional administrative panel of laboratory animal care at Stanford University.

For the aDR study with C57BL/6JN mice, 18-months-old mice were randomly assigned to AL or aDR. aDR treatment was initiated

by transferring mice from AL to 10% aDR for 7 days. After that, aDR was increased to 25%. aDR animals were fed once per day
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between 3-5 p.m., and all animals were checked daily for their well-being and any deaths. For the first 16 days, weights were checked

daily. Mice were euthanized at the ages of 19 months. All mice were euthanized in the morning within a period of 6 hours prior to the

regular feeding time of the DR mice.

The aDR study with C3B6F1mice was performed in accordance with the recommendations and guidelines of the Federation of the

European Laboratory Animal Science Association (FELASA), with all protocols approved by the Landesamt für Natur, Umwelt und

Verbraucherschutz, Nordrhein-Westfalen, Germany (84-02.04.2015.A437). Female F1 hybrid mice (C3B6F1) were generated in-

house by crossing C3H/HeOuJ females with C57BL/6NCrl males (strain codes 626 and 027, respectively, Charles River Labora-

tories). Lifespans of chronic DR and AL C3B6F1 mice were previously published.61 Pups were weaned at 3–4 weeks of age and

were randomly assigned to cages upon weaning. Animals were housed in groups of 5 females in individually ventilated cages under

specific-pathogen-free conditions with constant temperature (21 �C), 50–60% humidity and a 12 h/12 h light/dark cycle. For environ-

mental enrichment, mice had constant access to nesting material and chew sticks. All mice received commercially available rodent

chow (ssniff R/M-Low phytoestrogen, ssniff Spezialdiäten, Germany) and were provided with filtered water ad libitum. aDR animals

received 60% of the food amount consumed by AL animals. aDR treatment was initiated at 20 months of age by directly transferring

mice from AL to 40%DR. aDR animals were fed once per day, and all animals were checked daily for their well-being and any deaths.

Mice were euthanized at the ages of 24months. All mice were euthanized in the morning within a period of 3 hours prior to the regular

feeding time of the DR mice. Mice were euthanized by cervical dislocation, and tissues were rapidly collected and snap-frozen in

liquid nitrogen.

The cohort of mice treated with YMP or PBSwere housed at the Palo Alto VA animal facility under a 12 h/12 h light/dark cycle at 68–

73 �F under 40–60% humidity. All experiments were performed in accordance with institutional guidelines approved by the VA Palo

Alto Committee on Animal Research. Euthanasia and organ collection was conducted in the same way as the aging cohorts.

METHOD DETAILS

Processing and administration of plasma
YoungMouse Plasma (YMP) was collected following the protocol described by Villeda et al.59 and DeMiguel et al.79 Briefly, C57Bl/6J

male mice aged 2 months were group-housed and anesthetized with 2.5% v/v Avertin. Approximately 700 ml of blood was drawn via

cardiac puncture prior to transcardial perfusion. Blood was collected using 15 ml of 250 mM EDTA (Thermo Fisher Scientific,

15575020) and centrifuged at 4�C for 15 minutes at 1,000g to obtain plasma. The plasma from 20-25 mice was pooled together

and dialyzed in 1X PBS using cassettes (Slide-A-Lyzer Dialysis Cassettes, 3.5 kDa molecular weight cut-off, 3-12 ml) before being

frozen at -80�C.
For plasma transfer experiments, male C57BL/6JN mice aged 18 months were injected retro-orbitally with 150 ml of YMP per in-

jection. Prior to injection, mice were habituated by being placed on the procedure table in their cage. Injections were administered

every 3-4 days, alternating between the left and right eye to allow for recovery. Micewere rested for four days before tissue collection.

Brain region dissection
Dissociating themouse brain at scale poses several challenges, as the tissue consists of a multitude of biologically distinct structures

that require careful, time-consuming separation to avoid cross-region contamination - all while avoiding tissue degradation and loss

of RNA quality. We systematically assessed several isolation, dissection, and freezing strategies, most of which yielded low-quality

RNA or were not scalable to the intended set of samples and regions. We found success in perfusing the animal before isolating and

freezing the whole brain in under 5 minutes, thus rapidly stabilizing the tissue and RNA. Region isolation via slicing and atlas-guided

tissue punching was subsequently conducted at sub -0�C temperatures (Methods S1, section 1). In detail, brain regions were

dissected from frozen mouse brains through a modification of a previously developed protocol.80 Frozen brains were sliced into

1mm thick coronal slices at -20�C using a metal brain matrix and.22mm razor blades (Ted Pella, 15045; VWR, 55411-050) and

were then placed on dry ice and covered to prevent condensation. One slice at a time was placed on a metal block cooled on wet

ice and 1.5mm and 2mm diameter regions of interest were dissected quickly via disposable biopsy punches (Alimed, 98PUN6-2,

98PUN6-3) from the left and right hemispheres guided by visual landmarks and the Allen Mouse Brain Atlas. The same biopsy punch

was used for identical regions between left and right hemispheres, but replacedbetween regions andmice. 15 regionswere collected:

three cortical regions (motor cortex, visual cortex and entorhinal cortex), anterior (dorsal) and posterior (ventral) hippocampus, hypo-

thalamus, thalamus, caudate putamen (part of the striatum), pons, medulla, cerebellum and the olfactory bulb, corpus callosum,

choroid plexus and the subventricular zone. The following regions required overlapping punches and were thus sequentially

collected: (1) motor cortex, (2) caudate putamen, (3) subventricular zone, (4) corpus callosum (Methods S1, section 1).

Regions were stored at -80�C until further processing.

Bulk-seq preparation and sequencing
We isolated RNA from the right hemisphere brain regions described above using the RNeasy 96 kit (Qiagen, 74181) and a TissueLyser

II (Qiagen, 85300), according to RNeasy 96 Handbook protocol ‘‘Purification of Total RNA from Animal Tissues using Spin Technol-

ogy’’ without the optional on-plate DNase digestion. Quality control of RNA was conducted using a Bioanalyzer (Agilent) at the Stan-

ford Protein and Nucleic Acid Facility for three randomly selected samples per brain region.
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cDNA and library syntheses were performed in house using the Smart-seq2 protocol as previously described8,79 with the following

modifications: Extracted RNA (2 ul at a concentration of 25 ng/ul) was reverse-transcribed and the resulting cDNA amplified using 10

cycles. After bead clean-up using 0.7x ratio with AMPure beads (Thermo Fisher, A63881), cDNA concentration was measured using

the Quant-iT dsDNA HS kit (Thermo Fisher, Q33120) and normalized to 0.4 ng/ul as input for library prep. 0.8 ul of each normalized

sample was mixed with 2.4 ul of tagmentation mix containing Tn5 Tagmentation enzyme (20034198, Illumina) and then incubated at

55�C for 12 minutes. The reaction was stopped by burying the plate in ice for 2 minutes followed by quenching with 0.8 ul 0.1% so-

dium dodecyl sulfate (Teknova, S0180). 1.6 ul indexing primer (IDT) was added and amplified using 12 cycles. Libraries were pooled

and purified using two purification rounds with a ratio of 0.8x and 0.7x AMPure beads. Library quantity and quality was assessed

using a Bioanalyzer (Agilent) and Qubit dsDNA HS kit. Pipetting steps were performed using the liquid-handling robots Dragonfly

or Mosquito HV (SPT Labtech) using 384 well-plates and PCR reactions were carried out on a 384-plate Thermal Cycler (BioRad).

Illumina sequencing of the resulting libraries was performed by Novogene (https://en.novogene.com/) on an Illumina NovaSeq S4

(Illumina). Base calling, demultiplexing, and generation of FastQ files were conducted by Novogene.

10X Visium preparation and sequencing
Frozen brains (n = 2 males per age; aged 6, 18 and 21 months; C57BL/6J strain) were embedded in OCT for cryosectioning at 16

micron thickness (app. Bregma -1.655mm; Allen brain reference atlas coronal section 71). Reactions were carried out with the Visum

Spatial Gene Expression (GEX) and Tissue Optimization (TO) Slide & Reagent Kits according to the manufacturer’s protocol with rec-

ommended reagents (10XGenomics, 1000193 and 1000184). Sections were placed on designated capture areas of slides for TO and

GEX and stored at -80�C until further processing. TO and GEX slides were fixed with methanol and stained with hematoxylin and

eosin (H&E) for visualization of tissue morphology on a AxioImager Widefield Fluorescence Microscope (Zeiss) at 10-fold magnifica-

tion. To determine the optimal permeabilization time, TO slides were incubated with permeabilization enzyme for various timeframes

followed by incubation with reverse transcriptase (RT) and fluorescently labeled nucleotides (FLNs) and enzymatic tissue removal.

After visualizing cDNA signal via fluorescence microscopy, we selected 20 minutes as the optimal permeabilization time. GEX slides

were incubated with permeabilization enzyme for 20 minutes followed by incubation with RT. cDNA was then transferred into tubes

and amplified for 15 cycles using a Thermal Cycler (BioRad). Library construction steps were performed according to the manufac-

turer’s protocol and included cDNA fragmentation, end repair and A-tailing, adaptor ligation, and sample indexing and amplification.

Quality control of the constructed library was conducted via Bioanalyzer (Agilent). Illumina sequencing of the resulting libraries was

performed by Novogene (https://en.novogene.com/) on an Illumina NovaSeq S4 (Illumina). Base calling, demultiplexing, and gener-

ation of FastQ files were conducted by Novogene.

Nuc-seq preparation and sequencing
Single-nuclei preparation (n = 2 males and females per age and region; aged 3 and 21 months; all C57BL/6JN strain) and sequencing

was performed as previously described29 with the followingmodifications: Nuclei from left hemisphere brain region puncheswere iso-

latedwithEZPrep lysis buffer (Sigma,NUC-101) on ice.Single-nuclei isolation from thewhole hippocampusofC3B6F1mice (aDR)was

performed similarly with the exception that tissues were not pooled. Samples were placed into 2 ml cold EZ lysis buffer in a 2 ml glass

dounce tissue grinder (Sigma, D8938) and homogenized by hand 25 timeswith pestle A followed by 25 timeswith pestle Bwhile incor-

porating a 180-degree twist. Tissue homogenate was transferred to a fresh 15 ml tube on ice. The tissue grinder was rinsed with 2 ml

fresh lysis buffer and transferred to the tube holding the homogenate for a total volume of 4ml. Sampleswere incubated on ice for 5mi-

nutes. Nuclei were centrifuged at 500 x g for 5 minutes at 4�C, supernatant removed and pellet resuspended with 4 ml EZ lysis buffer,

and incubated on ice for 5minutes. Centrifugation at 500 x g for 5minutes at 4�Cwas repeated. After removing supernatant, the pellet

was resuspendedwith4ml chilledPBSandfiltered througha35-umcell strainer intoa5ml roundbottomFACStube (Corning, 352235).

Following centrifugation at 300 x g for 10 minutes at 4�C with break 3, supernatant was gently poured out leaving behind the nuclei

pellet. Pellet was resuspended in 400 ul PBS containing 1% BSA (Thermo Fisher, BP9700100), 0.2 ul Hoechst dye (Thermo Fisher,

H3570), and 2 ul recombinant RNase inhibitor (Takara, 2313B). Isolated nuclei were sorted on a MA900 Multi-Application Cell Sorter

(SonyBiotechnology). 25,000single nuclei per samplewerecollected into1.5mlDNA lo-bind tubes (Eppendorf, 022431021) containing

1mlbuffermixwithPBS,UltraPureBSA (ThermoFisher,AM2618), andRNase inhibitor (Takara, 2313B).Onemale andone femalesam-

ple from the same time point and region were pooled at this stage by FACS collecting into the same sample tube (thus yielding 50,000

nuclei per tube). Collected nuclei were centrifuged at 400 x g for 5minutes at 4�Cwith break 2. Supernatant was removed leaving 40 ul

suspended nuclei. Nuclei were counted using a hemocytometer (Sigma, Z359629-1EA) and assessed for concentration and quality.

Reagents of the Chromium Single Cell 3’ GEM&Gel Bead Kit v3.1 (10XGenomics, 1000121) were thawed and prepared according

to themanufacturer’s protocol. Nuclei andmaster mix solution was adjusted to target 10,000 nuclei per sample and loaded on a stan-

dard Chromium Controller (10X Genomics, 1000204) according to manufacturer protocols. We applied 11 PCR cycles to generate

cDNA. Library construction was conducted using Chromium Single Cell 3’ Library Construction Kit v3 (10X Genomics, 1000121). All

reaction and quality control steps were carried out according to the manufacturer’s protocol and with recommended reagents, con-

sumables, and instruments. We chose 11 PCR cycles for library generation. Quality control of cDNA and libraries was conducted

using a Bioanalyzer (Agilent) at the Stanford Protein and Nucleic Acid Facility. Illumina sequencing of the resulting libraries was per-

formed by Novogene (https://en.novogene.com/) on an Illumina NovaSeq S4 (Illumina). Base calling, demultiplexing, and generation

of FastQ files were conducted by Novogene.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Bulk-seq quantification, quality control
Raw sequence readswere trimmed to remove adaptor contamination and poor-quality reads using TrimGalore! (v.0.4.4, parameters:

–paired –length 20 –phred33 –q 30). Trimmed sequences were aligned using STAR (v.2.5.3, default parameters). Multi-mapped reads

were filtered. Read quality control and counting were performed using SeqMonk v.1.48.0 and RStudio v.3.6. Data visualization and

analysis were performed using custom Rstudio scripts and the following Bioconductor packages: Deseq2,33 topGO, destiny and

org.Mm.eg.db. Finally, we excluded pseudogenes and predicted genes from the count matrix to focus predominantly on well-anno-

tated, protein-coding genes. In total, all of the following analyses were performed on the same set of 21,076 genes.

To assess the quality of our dataset, the count matrix was analyzed using Seurat’s built-in, default dimensionality reduction work-

flow81 (Normalization: ‘LogNormalize’; Variable feature discovery: selection.method=’vst’, features=2000). Umaps were calculated

using Seurat’s built-in functions, based on the first 40 principle components (PC) dimensions (Figure 1C; Methods S1, section 2). A

shared-nearest-neighbors graph was constructed using the first 40 PC dimensions before clustering samples using Seurat’s built-in

FindClusters function with a resolution of 0.8 to identify samples that would not cluster with their region of origin.

We corroborated the Seurat-based quality assessment by loading and normalizing the count matrix using DEseq2 before con-

ducting the built-in variance stabilizing transformation.33 We then performed hierarchical sample-to-sample clustering using Ward’s

clustering algorithm across all 21,076 genes (Methods S1, section 2). To detect whether samples within a given tissue would show

profound clustering by age, we finally calculated diffusion maps using the R package destiny with default parameters (Figure 1D).

For bar graph visualization of gene expression (e.g. Figure 1E), we used DEseq2-normalized counts after calculating factors and

dispersion estimates across all regions using the factor design �age + region. Trajectories were smoothed via triangular moving

average across the interval between 3 and 28 months. This quantification and smoothing was solely used for visualization and

was not the basis for any statistical testing in this study.

Bulk-seq differential expression
To identify significant differential expression changes with age, we used the raw count matrix as recommended for the DEseq2 stan-

dard analysis pipeline. Factors and dispersion estimates were calculated for each region separately. We conducted differential

expression analysis comparing samples from 3 months to each consecutive time point, using sex as covariate. This is consistent

with previously published differential expression analyses performed across whole organs in mice.8 P values were adjusted for mul-

tiple testing, and genes with an adjusted P value of less than 0.05 were determined to be statistically significant. Finally, we required a

gene to reach statistical significance (after multiple testing correction) in at least 2 pairwise comparisons (e.g. 3 months vs 18months

and 3months vs 21months) to be called a differentially expressed gene (DEG).We chose this criterion to retain only geneswith robust

differential expression patterns across age groups. We recognize that this tends to select against genes that are differentially ex-

pressed very late in life (i.e. 3 months vs 28 months).

To demonstrate the validity of using sex as a model covariate in the differential gene expression analysis, we performed gene-wise

likelihood-ratio tests (LRT analysis, as implemented in DESeq2 7). This assesses the goodness of fit between a ‘complete’ model

formula ( expr. � age + sex + age:sex interaction) and the model formula implemented in our study (expr. � age + sex). This analysis

was run across ages 3 to 21 months, due to the lack of female samples for ages 26 and 28 months. If aging trajectories would be

reasonably similar between sexes, then the LRT would indicate a significantly better goodness of fit for the complete model in

only very few genes, if any (i.e. the interaction term improves the fit). In addition, we repeated the differential expression analysis

for the age groups 3 to 21 months, for which we had data from both sexes. In addition, we repeated the differential expression anal-

ysis across age groups only in female or male samples, respectively. For themales, we further excluded samples of age groups older

than 21 months. To demonstrate that expression shifts in both sexes were overall strongly associated, we extracted for each age

comparison relative to 3 months (i.e. 12 vs 3 months, 15 vs 3 months, etc.) the genes passing the significance threshold of

padj < 0.05 in at least one of the sexes. We plotted the respective log2FoldChanges for each sex and counted the number of genes

in each of the resulting four quadrants. This was used as a 2-by-2 Fisher Matrix and tested for significant association using one-sided

Fisher’s exact test. We exemplified this with the motor cortex and the comparison of 18 vs 3 months (Figure S1D). The resulting

p-values (adjusted formultiple testing) were visualized on top of a heatmap that is colored according to the fraction of genes following

the same trend in regulation (upper right and lower left quadrant) relative to all the plotted genes (all four quadrants combined). We

found consistently high, statistically significant overlaps in regulation during aging between both sexes (Figure S1E).

Differential expression for the rejuvenation interventions was performed as described for the aging cohorts, except that no addi-

tional filter of 2 pairwise comparisons was employed.

DEG Gene Ontology functional enrichment
Unless stated otherwise, we performed functional enrichment analysis for DEGs using the Biocunductor package topGO as

described in detail before.8,57 Unless stated otherwise, the set of expressed genes (defined as passing the independent filtering cri-

terion of DEseq233) was used as background for all functional enrichment analyses involving expression data. Top-ranked, represen-

tative Gene Ontology (GO) terms were selected and visualized using the CellPlot package. The full-length GO terms were shortened

to fit into the figure format.
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Bulk-seq GWAS gene enrichment and expression distribution analysis
We analyzed if DEGs of a given region would be enriched for disease-associated genes using a previously assembled list of GWAS

hits for several neurodegenerative diseases.63 The analysis was focused on Alzheimer’s disease and Parkinson’s disease (both age-

related forms of dementia) and multiple sclerosis as we had observed several white matter-related effects in our dataset. We refer to

these as ‘disease-associated genes’. Disease-associated genes that were expressed in a given region (defined as passing the inde-

pendent filtering criterion of DESeq233) were analyzed. To determine if disease-associated genes were enriched among the DEGs of

a given region, we used a one-sided hypergeometric test with expressed genes as background. Resulting P values were corrected

for multiple testing. We chose the anterior hippocampus region as representative for the hippocampus, and further excluded the en-

torhinal cortex (too few DEGs) and olfactory bulb. For each disease, we plotted the enrichment and the relative composition of dis-

ease-associated DEGs with respect to their regulation (i.e., up- or down-regulated) using the CellPlot package. We clustered regions

for using a pairwise Jacquard Distancematrix, so that regionswith overlapping diseases-associated DEGswill cluster together. Gene

overlaps with a Jaccard index R 0.25 were indicated with an arc.

Additionally, we performed a systematic analysis of expression shifts that could affect a given GWAS homologue’s distribution

across the brain. To this end, we focused on sets of GWAS-DEGs in each region and ranked their mean expression at young

(3months) and very old (26months) age, respectively. For instance, Irf8, one of the GWAS-DEGs associated with MS, became differ-

entially regulated in multiple regions, including the corpus callosum (Figure S7B). However, the actual rank of the top Irf8-expressing

regions (caudate putamen, SVZ and corpus callosum) stayed relatively constant. In contrast, the expression ofNlrc5, a gene from the

same set, was only the 8th-highest in the corpus callosum at young age, but became the highest across all tissues with age (Fig-

ure S7B). Here, the differential regulation with age led to a significant redistribution of where the gene is predominantly expressed.

Expanding the analysis to all GWAS-DEGs in a given tissue/disease set with least 15 genes to focus on (to ensure statistical power),

we tested if there would be a systematic shift in rank-based expression using paired two-sided Wilcoxon rank-sum tests.

Bulk-seq correlation of gene expression with age
For each region separately, we probed the expression of each gene (using DEseq2-normalized counts) for positive or negative cor-

relation with age using Spearman’s method and tested for significant association. P values were adjusted for multiple testing using

the Benjamini-Hochberg method. Genes with Spearman’s rhoR 0.5 or% -0.5, respectively, and padj% 0.05 were called as signif-

icantly age-correlated in a given region. The total number of age-correlated geneswas used to evaluate the impact of aging on a given

region.

The sex-specific age-correlations in the hypothalamus were performed similarly, by subsetting the dataset to the ages 3 to

21 months (for which data of both sexes was available). Correlation with age was then calculated for each gene based on the

male or female samples only. Criterion for age-correlated genes remained the same.

Weighted gene co-expression network analysis (WGCNA)
Network analysis was performed with the Weighted Gene Correlation Network Analysis (WGCNA)82 package to identify significant

modules that were associated with a specific aging group and brain region. Modules were independently detected in each brain re-

gion. For each brain region the soft-thresholding (ß value) was set based on scale-free topology (R2>0.8) to construct a correlation

adjacencymatrix. ß values 18, 10, 9, 8, 12, 4, 4, 5, 7, 9, 24, 14, 4 and 13 were used for the corpus callosum, cerebellum, motor cortex,

entorhinal cortex, anterior hippocampus, posterior hippocampus, hypothalamus, medulla, olfactory bulb, choroid plexus, pons, SVZ,

thalamus and visual cortex respectively. The ‘blockwiseModules’ function was used to construct the network. Biweight midcorrela-

tion (‘bicor’) was used to compute the correlation between each pair of genes. Network analysis was performed with the ‘‘signed’’

network. The ‘‘deepSplit’’ argument value was 2 and a minimum cluster size was 25. (blockwiseModules parameters: datExpr=(da-

tExpr), maxBlockSize=22000, networkType="signed", corType="bicor", power=ß, saveTOMFileBase=(file=’TOM_signed’), minMo-

duleSize=25, deepSplit=2, saveTOMs=TRUE.)

The average linkage hierarchical clustering of the topological overlap dissimilarity matrix (1-TOM) was used to generate the

network dendrogram. The hybrid dynamic tree-cutting method was used to define modules. Modules were summarized by their first

principal component (ME, module eigengene) and modules with eigengene correlations >0.9 were merged.

Module-aging group associations were evaluated using a linearmodel within each brain region. Significance valueswere corrected

for multiple testing using Benjamini-Hochberg method. Results from module-eigengene association tests are shown in Table S1.

Genes within each module were prioritized based on their module membership (kME), defined as correlation to the module eigen-

gene. The top ‘hub’ genes for several of the modules are shown in Table S1. Cell type enrichment analyses were performed using

several mouse derived cell type specific expression datasets.83–85 Enrichment was performed for cell type specific marker genes

using Fisher’s exact test, followed by Benjamini-Hochberg-correction for multiple testing. The WGCNA results were assembled in

summarizing figures that can be browsed through our interactive shiny app website (https://twc-stanford.shinyapps.io/

spatiotemporal_brain_map/).

Estimating the variance of the data depending on metadata
To estimate the variance in the data depending on age, tissue or gender we made use of principal variance component analysis

(PVCA) as implemented in the Bioconductor Package pvca and described in detail in Schaum et al.8 PVCA combines the strength
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of principal component analysis and variance components analysis (VCA). Originally it was applied to quantify batch effects in micro-

array data. In our case, however, we do not provide experimental batches but rather groups of meta data as input

Gene signature generation and score calculation
Gene signatures are used in this study to quantify the expression of a gene set, thus representing the aggregated expression of mul-

tiple genes in a given transcriptome (e.g. a regional bulk-seq transcriptome or a single-nuclei transcriptome). The resulting value is

defined as a score. Throughout the manuscript we generated signatures and quantified scores using the VISION (v.3.0) package as

detailed in the original study.25 Notably, VISION z-normalizes signature scores with random gene signatures to account for global

sample-level metrics (such as total number of counts/UMIs, which can be affected by age86). While VISION was originally intended

for the analysis of signatures in single-cell data we found its analysis workflow applicable for bulk, spatial and single-cell/-nuclei data-

sets. We note that due to differences in baseline expression across regions or cell types as well as the z-normalization mentioned

above, VISION scores can be negative. However, our analyses are focused - unless stated otherwise - on the relative score changes

(i.e. increase or decrease relative to 3 months) occurring with age in a given region or cell type.

Bulk-seq marker genes and score calculation
Seurat’s FindAllMarkers function was run using the ‘DESeq2’ test with parameters and Bonferroni correction for multiple testing to

identify region-specific marker genes (P value of less than 0.05; Methods S1, section 3). For each region, we constructed unsigned

signatures25 based on a given region’s significant marker genes. For each signature, we calculated scores across a publicly available

spatial transcriptome dataset from 10X Genomics (https://www.10xgenomics.com/resources) and compared the patterns to struc-

tural annotations in Allen Mouse Brain Atlas.

Bulk-seq Common Aging Score (CAS) calculation and CAS velocity comparison
We ranked genes on the basis of their regulation across regions, to summarize in howmany regions a given gene would be called as a

DEG (i.e. reach statistical significance in at least two comparisons between samples from 3months and any following age group). We

included only the anterior hippocampus region in the selection of cross-region DEGs to prevent a potential bias towards aging effects

in the hippocampus. This led to the identification of 82 genes that were marked as DEG in at least 10 out of 14 regions (15 regions

minus the posterior hippocampus region). We constructed a signed gene signature25 based on 75 up- and 7 down-regulated DEGs.

We used the signature to calculate CAS for each single-region transcriptome. To quantify a region’s score increase over time (aging

velocity), we constructed a linear model with the design: score � age + region + age:region (score explained by a two factor model

including interaction term) using the linear model function in R. We used the lstrends function of the lsmeans package87 that utilizes

least-square means to estimate and compare the slopes of fitted lines for each region. We subsequently used Tukey’s range test

across all possible region-to-region comparisons to assess which regions exhibited statistically significant (P value < 0.05) slope dif-

ferences. In addition, we repeated the analysis resolved for sex-specific effects across the 3, 12, 15, 18 and 21 months groups (for

which we had bothmale and female samples). We assessed if there was a differential aging velocity between sexes across all regions

(Figure 2I), for which analyzed a linear model with the design: score � age + sex + age:sex + region. We further performed the same

analysis iteratively for each region individually (Figure S1D) using amodel with the design: score� age + sex + age:sex. We corrected

the resulting P values for each region-wise analysis using the Benjamini-Hochberg method.

Comparing CAS velocity with STARmap single-cell composition
We obtained meta data from Shi et al.41 via the Single Cell Portal where the authors had quantified spatial distribution of major cell

types across the entiremouse brain using their previously published, imaging-based STARmapmethod.88 This atlas contains data on

422,766 single cells of 27 major cell types quantified across 73 brain structures and several sagittal sections. We aggregated the 73

reported brain structures into 10 regions that we considered meaningful equivalents of regions profiled in our Bulk-seq study (e.g.

data from CA1, CA2, CA3, dentate gyrus etc. were grouped together into a ‘hippocampus’ region). We calculated for each of the

10 regions the relative abundance of each of the 27 cell types and then correlated these with the regions’ respective CAS slopes.

If, for example, the relative abundance of microglia across brain regions at young age was responsible for the observed differences

in CAS slopes, then we would assume a significant correlation between those two metrics across the analyzed brain regions. We did

not find any significant relationship (as tested with spearman correlation and linear regression) between relative cell abundance and

CAS increase over time for any of the investigated cell types (Figure 2J; Methods S2, section 1).

Microarray analysis of microglia
We obtained annotated and pre-processedmicroarray data fromGrabert et al.52 (GSE62420) using limma,89 GEOquery90 and GEO’s

online GEO2R tool (https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html). Pairwise-differential testing between age groups of the

same region was performed using empirical bayes moderation as implemented in limma with multiple testing correction.

Organ-specific aging signature identification and velocity comparison
To explore the feasibility of detecting gene expression patterns with organ-specific regulation during aging, we re-analyzed a previ-

ously published bulk RNA-seq dataset of 17mouse tissues profiled across ten age groups (n = 4males; aged 1, 3, 6, 9, 12, 15, 18, 21,
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24 and 27months; n = 2 females; aged 1, 3, 6, 9, 12, 15, 18 and 21months).8 The dataset comprised the following organs: bone, brain,

brown adipose tissue (BAT), gonadal adipose tissue (GAT), heart, kidney, limb muscle (muscle), liver, lung, bone marrow (marrow),

mesenteric adipose tissue (MAT), pancreas, skin, small intestine (intestine), spleen, subcutaneous adipose tissue (SCAT), and white

blood cells (WBC). We obtained pre-processed data as described in the original study and performed differential expression analysis

accordingly.8 We identified age-related DEGs in the same manner as described for the bulk-seq data: we used the raw count matrix

as recommended for the DEseq2 standard analysis pipeline. Factors and dispersion estimates were calculated for each tissue sepa-

rately. We conducted differential expression analysis comparing samples from 3-months-old mice to each consecutive time point,

using age and sex as covariates. P values were adjusted for multiple testing, and genes with an adjusted P value of less than 0.05

were determined to be statistically significant. Finally, we required a gene to reach statistical significance (after multiple testing

correction) in at least 2 pairwise comparisons (e.g. 3-months-old vs 12 months-old and 3-months-old vs 21 months-old) to be called

a differentially expressed gene (DEG). We analyzed age groups that would be comparable to the age groups profiled in our study (3,

12, 15, 18, 21, 24 and 27months). We ranked genes on the basis of their regulation across organs, to summarize in howmany organs

a given gene would be called as a DEG (i.e. reach statistical significance in at least two comparisons between samples from

3-months-old mice and any following age group). DEGs that were only detected in a single organ were assembled into signed, or-

gan-specific aging signatures using VISION,25 comparable to the CAS (Methods S3, section 1). For organs that exhibited fewer than

25 unique DEGs we did not construct a signature. For each organ-specific signature, we performed the following analysis: We first

tested for each organ separately, if the respective signature would show a significant correlation with age using linear models with the

design: score � age. Organs that showed no significant (P val < 0.05, t-test) association with the age were excluded. Next, we con-

structed a linear model with the design: score � age + organ + age:organ (organ-specific score explained by a two factor model

including interaction term) using the linear model function in R. We used the lstrends function of the lsmeans package87 that utilizes

least-square means to estimate and compare the slopes of fitted lines for each organ. We subsequently used Tukey’s range test

across all possible organ-to-organ comparisons to assess which organs exhibited statistically significant (P value < 0.05) slope dif-

ferences. Notably, we asked if the organ where the signature was identified (the ‘reference’ organ) would show a significantly higher

slope compared to all other organs. The summarized results are displayed in the heatmap in Methods S3, section 1.

Bulk-seq region-specific aging signature identification and velocity comparison
We ranked genes on the basis of their regulation across regions, to summarize in howmany regions a given genewould be called as a

DEG (i.e. reach statistical significance in at least two comparisons between samples from 3-months-old mice and any following age

group). DEGs that were only detected in a single region were assembled into signed, region-specific aging signatures using

VISION,25 comparable to the CAS (Methods S3, section 2). We excluded the posterior hippocampus region in the selection of re-

gion-specific DEGs. Further, there were less than 20 unique DEGs found for the entorhinal cortex, which we considered too small

to construct a signature. For each region-specific signature, we performed the following analysis: We first tested for each region

separately, if the respective signature would show a significant correlation with age using linear models with the design: score

� age. Regions that showed no significant (P val < 0.05, t-test) association with age were excluded. Next, we constructed a linear

model with the design: score� age + region + age:region (region-specific score explained by a two factor model including interaction

term) using the linear model function in R.We used the lstrends function of the lsmeans package87 that utilizes least-square means to

estimate and compare the slopes of fitted lines for each region. We subsequently used Tukey’s range test across all possible region-

to-region comparisons to assesswhich regions exhibited statistically significant (P value < 0.05) slope differences. Notably, we asked

if the region where the signature was identified (the ‘reference region’) would show a significantly higher slope compared to all other

regions. The summarized results are displayed in the heatmap in (Methods S3, section 2).

10X Visium mapping, embedding, clustering and region identification
Space Ranger analysis pipelines were utilized to align image and FASTQ files, detect tissue and fiducial frames, count barcodes/

UMIs. Throughout the manuscript we refer to the barcoded areas from a given dataset as ‘spots’. Spots with less than 5 UMIs

were removed as well as all spots at the outline of the tissue as these can be affected by RNA diffusion. We integrated all six sam-

ple-wise datasets (two from 6 months, two from 18 months and two from 21 months), using Seurat’s built-in SCTransform and inte-

gration workflow,81 with 2000 genes set as integration features. Integrated datasets were then used as input for spot embedding and

clustering. A shared-nearest-neighbors graph was constructed using the first 30 PC dimensions before clustering spots using Seur-

at’s built-in FindClusters function with a resolution of 0.8 and default parameters. Umaps and tSNEs were calculated using Seurat’s

built-in functions, based on the first 30 PC dimensions. Count data was subsequently normalized and scaled using SCTransform

across all spots to allow for visualization of expression values and differential gene expression analysis.

We chose a data-driven approach to group spots and map them to anatomical structures of the brain (Figure S4A): Transcriptional

clustering yielded 29 clusters and we used Seurat’s FindAllMarkers function (parameters: min.pct=0.1, thresh.use=0.1 assay=’SCT’,

only.pos=TRUE) to identify cluster markers. We compared the expression of marker genes to in-situ hybridization (ISH) data from the

Allen Mouse Brain Atlas26 and visual landmarks from the H&Emicroscopy images (e.g. cornu Ammonis and dentate gyrus of the hip-

pocampus; cell-sparse structure of the white matter fiber tracts). To enable comparisons with the regions isolated for Bulk-seq, we

additionally grouped annotated clusters into meaningful region-level sets, guided by their anatomical location and the hierarchical

ordering of structures in the Allen Mouse Brain Atlas. Ontology and nomenclature of clusters is indicated in Figure S4B.
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10X Visium differential expression analysis and comparison with Bulk-seq data
Given comparable representation of clusters across all samples and age groups, we considered differential expression analysis

across age groups feasible. We analyzed differential expression in the white matter and cortex cluster as we considered them com-

parable to the corpus callosum (high CAS velocity) and motor cortex (low CAS velocity) region from the bulk-seq dataset. Differential

gene expression of genes comparing 10X Visium data from 6 months to 21 months was done using the ‘DESeq2’ algorithm imple-

mented in Seurat on Spatial count data. Seurat natural log(fold change) > 0.2 (absolute value), adjusted P value (Benjamini-Hochberg

correction) < 0.05, and expression in greater than 10% of spots in both comparison groups were required to consider a gene differ-

entially expressed. To test for a potential association between gene-expression changes measured in 10X Visium and bulk-seq data,

we considered only genes that changed significantly in both datasets. For both regions, we confirmed significant overlap between the

DEGs found in Bulk-seq and 10X Visium dataset (Fisher’s exact test, P Value < 0.05). Next, we plotted log2 fold expression changes

during aging as measured via Visium versus log2 fold expression changes on the bulk-seq level. The distribution of genes among the

four resulting quadrants was tested for directionality using Fisher’s exact test.

Visium CAS calculation
Calculation of CAS and CAS velocities for Visium data was carried out in a similar manner as described above for bulk-seq data: CAS

for each Visium spot were calculated and score increase over time was calculated for region clusters with equivalent Bulk-seq re-

gions: White matter (compared to corpus callosum), cortex (compared to motor cortex), striatum (compared to caudate putamen),

hippocampus, hypothalamus, choroid plexus and thalamus. To quantify a region’s score increase over time (aging velocity), we con-

structed a linearmodel with the design: score� age + region + age:region and carried out slope estimation and differential analysis as

described above. We acknowledge that this analysis does not account for biological replicates but treats each spot belonging to the

same region as replicate. We therefore visualized CAS in Visium for each replicate, to demonstrate that age-related changes in CAS

supersede the intra-replicate CAS differences.

Nuc-seq mapping, embedding, clustering, sample demultiplexing and cell type identification
Cell Ranger (v.6.1.2) analysis pipelines were utilized to align reads tomm10 reference genome and count barcodes/UMIs. To account

for unspliced nuclear transcripts, reads mapping to pre-mRNA were counted. Throughout the manuscript we use nuclei and ‘cells’

synonymously. Outliers with a high ratio of mitochondrial (more than 5%, fewer than 400 features) relative to endogenous RNAs and

homotypic doublets (more than 6,000 features in hippocampus; more than 7,000 features in caudate putamen) were removed in

Seurat.81 We integrated all sample-wise datasets, using Seurat’s built-in SCTransform and integration workflow,81 with 500 genes

set as integration features. Integrated datasets were then used as input for cell embedding and clustering. A shared-nearest-neigh-

bors graph was constructed using the first 12 PC dimensions before clustering spots using Seurat’s built-in FindClusters function

with a resolution of 0.4 and default parameters. Umaps and tSNEs were calculated using Seurat’s built-in functions, based on the

first 12 PC dimensions. A given nuc-seq sample represented nuclei from amale and female animal (of the same age) that were pooled

in equal numbers during the nuclei isolation steps. To demultiplex a sample by sex, we calculated the ratio of counts belonging to

female- (Xist, Tsix) and male-specific (Ddx3y, Eif2s3y, Uty, Kdm5d) genes, and identified nuclei with a log2 cutoff of 1 and -1 as fe-

male- and male-derived nuclei, respectively. Ambiguous nuclei, which had reads from both female and male nuclei, were removed

from the analysis. Count data was subsequently normalized and scaled to allow for visualization of expression values and differential

gene expression analysis. Seurat’s FindAllMarkers function (parameters: min.pct=0.15, thresh.use=0.15 assay=’SCT’) was run to

identify cluster markers. Clusters were annotated based on marker genes. Finally, nuclei were manually inspected using known

cell type-specific marker genes and nuclei expressing more than one cell type-specific marker were defined as doublets and

removed.91

Publicly available scRNA-seq data embedding
We re-analyzed two previously published single-cell RNA-seq datasets: (1) Droplet-based scRNA-seq of freshly dissected SVZ at

young and old age (n = 3 males per age; aged 3 and 28 months; all C57BL/6JN strain)27; (2) Smart-seq2-based49 scRNA-seq of

freshly isolated cells from the myeloid and non-myeloid fraction of the striatum, cerebellum, hippocampus and cortex at young

and old age (n = 4 males per age; aged 3 and 24 months; all C57BL/6JN strain).19 For the SVZ data, we obtained and analyzed

pre-processed count matrices. For visualization purposes, we integrated all sample-wise datasets, using Seurat’s built-in SCTrans-

form and integration workflow,81 with 2000 genes set as integration features. Integrated datasets were then used as input for cell

embedding. Umaps and tSNEs were calculated using Seurat’s built-in functions, based on the first 12 PC dimensions. Cell annota-

tions were transferred from the original study. Count data was subsequently normalized and scaled to allow for visualization of

expression values.

For the second dataset, we obtained and analyzed pre-processed count matrices. We followed previous analyses on the same

dataset.73 For visualization purposes, we integrated all sample-wise datasets, using Seurat’s built-in SCTransform workflow.81 Inte-

grated datasets were then used as input for cell embedding. Umaps and tSNEs were calculated using Seurat’s built-in functions,

based on the first 12 PC dimensions. Cell annotations were transferred from the original study. Count data was subsequently normal-

ized and scaled to allow for visualization of expression values.
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Differential expression in scRNA- and Nuc-seq data
Differential gene expression of genes comparing young and old samples was done using the MAST92 algorithm, which implements a

two-part hurdle model. Random effects accounting for individual brain samples were not included in themixedmodel. Seurat natural

log(fold change) > 0.2 (absolute value), adjusted P value (Benjamini-Hochberg correction) < 0.05, and expression in greater than

10% of cells in both comparison young and old samples. We acknowledge that due to the omission of a dedicated replication-sen-

sitive analysis, an impact of pseudo-replication effects on differential expression results cannot be excluded.

Signature calculations in scRNA- and Nuc-seq data
Calculation of CAS and CAS velocities for scRNA- and Nuc-seq data was carried out in a similar manner as described above for 10X

Visium data: CAS for each cell were calculated and CAS increase over time was calculated for cell types. To quantify a cell type’s

score increase over time (aging velocity), we constructed a linear model with the design: score � age + cell type + age:cell type

and carried out slope estimation and differential analysis as described above. We acknowledge that this analysis does not account

for biological replicates but treats each cell belonging to the same cell type as replicate. To account for this, we further calculated the

cell type-median CAS for each biological replicate and tested for differential CAS regulation with two-tailed t-test on per-replicate

median of CAS. For the comparison of CAS increase with age across microglia from different brain regions (Figures 4A–4C), we

used two-sided Wilcoxon rank-sum tests to test for CAS differences between microglia from the same age group.

For region-specific signatures, we performed a per-cell type slope quantifications as detailed for the CAS and clustered the result-

ing slope estimates using hierarchical clustering (Figures 5H and 5K).

Single-nuclei dispersion score
We employed a previously published strategy to quantify if a given DEG detected in bulk data would be expressed in a specific cell

type.8 For each gene in each brain region, we selected cells expressing the gene (log-CPM expression > 0). Next, we assigned to the

cells the log-CPM expression values of the gene as weights. Based on these, we calculated the weighted center of the cells in the

single-cell landscape defined by the UMAP embeddings. We defined the ‘single-cell dispersion’ of the gene as the weighted mean

distance of the cells from their weighted center. Finally, we introduced region specific factors to account for differences between

brain region specific embeddings. Per region, we set pseudo log-CPM count 1 to all cells and calculated the dispersion of them.

We normalized the dispersion scores by these region-specific factors.

ADDITIONAL RESOURCES

We created an web application app to provide interactive access to the processed bulk-seq and Visium data. The app can be ac-

cessed via: https://twc-stanford.shinyapps.io/spatiotemporal_brain_map/.
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Supplemental figures

Figure S1. Validation of differential gene expression analysis, related to Figure 1

(A) Number of differentially expressed genes in 2+ age comparisons (12, 15, 18, 21, 26, and 28 months) relative to 3 months. Split by region, colored by up- and

down-regulation. padj R 0.5 in 2+ comparisons.

(B) Number of differentially expressed genes in 2+ age comparisons (12, 15, 18, and 21 months) relative to 3 months. Split by region, colored by up- and down-

regulation. padj R 0.5 in 2+ comparisons.

(C) Total number of genes exhibiting a significant interaction between sex and age split by region. padj < 0.05 likelihood-ratio test (LRT).33

(D) Scatterplot representation of genes that are differentially regulated at 18 months of age in motor cortex of female or male samples, respectively. Plotted are

genes that pass statistical testing in at least one of the sexes. The number of genes in each quadrant is indicated in blue.

(E) Heatmap representing results of association analyses of DEGs in males and females. Indicated are the fraction of DEGs that were co-regulated in males and

females for pairwise comparisons, referenced to data at 3months. Fractions were calculated as sum of genes following the same trend in both sexes relative to all

genes passing the significance threshold in at least one sex. Results of one-sided Fisher’s exact test for association of gene regulation in both sexes are indicated

as well. One-sided Fisher’s exact test, adjusted for multiple testing, ***p < 0.001, **p < 0.01, *p < 0.05.
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Figure S2. A commonRNA aging signature quantifies the region-specific pace andmagnitude of transcriptional shifts in the brain, related to

Figure 2

(A) CAS trajectories of all regions, colored by age. Red lines indicate averaged-smoothed values.

(B) CAS for each sample grouped by animal. Each boxplot represents the distribution of CAS across the 15 regions as measured by bulk RNA-seq. Animals are

ranked by the median score and colored by chronological age. Distribution of chronological age groups is indicated in the background.
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Figure S3. Hypothalamus aging is accelerated in females, related to Figure 2

(A) CAS trajectories of all regions for the interval of 3–21 months, colored by sex.

(B) Sex-specific slope of linear regressions in (A), colored by sex. Data are mean ± 95% confidence intervals. Pairwise, two-sided Tukey’s HSD test. For each

region, we calculated a separate model limited to data from the respective tissue only. ***p < 0.001, **p < 0.01, *p < 0.05. The highest (least significant) p value is

indicated.

(C) Scatterplot representation of genes that significantly correlate with age (Spearman’s rhoR 0.5) in males, females, or both. The number of overlapping DEGs in

each quadrant is indicated in blue.

(D) Representative GO analysis of genes with significant age correlation in males or females. Lengths of bars represent negative ln-transformed padj using two-

sided Fisher’s exact test. Colors indicate gene-wise age-correlation coefficient.

(E) Bulk expression of genes with age correlation in males, split by male and female samples. Lines indicate linear fit of gene expression resolved by sex. Data are

mean ± SEM.

(F) Same as (E) for genes with significant age correlation in females. Expression in hypothalamus, cerebellum, and corpus callosum are shown to demonstrate the

specificity of sexual dimorphisms in the hypothalamus.
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Figure S4. Robust capture of spatial transcriptomes across age, related to Figure 3

(A) 10X Visium processing and analysis overview. Whole brains were frozen prior to OCT embedding and cryo-sectioning. Coronal sections were placed on a 10X

Visium Spatial Gene Expression slide, followed by H&E staining and spatial reverse-transcription reaction. Single-spot transcriptomes were integrated, clustered

with default settings, and visualized as UMAP. Clustered spatial spot transcriptomes weremapped to their original location. To annotate the clusters, their marker

genes (Table S1) were visualized, compared with the Allen Brain Atlas.26

(B) Complete data description and abbreviations of ontology and nomenclature for spatial transcriptome data. Regional-level data annotated manually and

cluster-level data determined by Seurat clustering.

(C and D) Representative spatial transcriptome data (6 months replicate #2), colored by cluster-level annotation and represented as (C) UMAP and (D) spatial

transcriptome.

(E and F) Representative spatial transcriptome data (6 months replicate #2), colored by region-level annotation and represented as (E) UMAP and (F) spatial

transcriptome.

(G–I) Cluster-level annotation across replicates and datasets represented as (G) UMAP and (H) spatial transcriptome. (I) Fraction of spots corresponding to each

cluster.

(J–L) Region-level annotation across replicates and datasets represented as (J) UMAP and (K) spatial transcriptome. (L) Fraction of spots corresponding to each

region.
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Figure S5. Mapping the shared and distinct expression patterns of dietary restriction and young mouse plasma injection, related to Figure 6

(A) Body weight change for animals fed AL and those with aDR (n = 9). Each animal’s individual trajectory is depicted with gray points. Per-group averages are

indicated by trajectories colored in black. Start of the complete 25% aDR phase is indicated.

(B) Body weights for each animal at the beginning and end of the aDR phase. p values calculated with two-tailed, paired t test. Bonferroni correction; padj < 0.05.

***p < 0.001, **p < 0.01, *p < 0.05.

(C) PCA of bulk-seq data of liver tissue from the aDR and AL-fed mice.

(D) Bar graph indicating the number of detected DEGs in liver tissue of aDR-fed mice.

(E) Venn diagrams depicting the overlap of DEGs in liver of C57BL/6JN and chronically DR-fed B6D2F1 mice (data from Hahn et al.57).

(F) Injection paradigm for YMP-treated animals. Injections were administered retro-orbitally every 3–4 days. Injections were alternated between left and right eye.

(G) UMAP representation of co-integrated brain region transcriptomes from rejuvenation cohorts and aging time course (n = 131 total samples frommice with DR/

AL-fed mice; n = 98 samples from YMP/PBS mice; n = 847 samples from aging cohort; from Figure 1), based on the first 40 principal components. Cells are

colored by experiment (left) or region (right).

(H and I) Barplots showing the proportion of genes that are differentially expressed with age, which are reversed by (H) aDR or (I) YMP injection. The plots show

whether the genes increase or decrease with age in relation to specific regions.

(J) Gfap and Cst7 expression in caudate putamen. Differential expression relative to control group is indicated. Data are mean ± SEM. Two-sided Wald test,

adjusted for multiple testing. ***p < 0.001, **p < 0.01, *p < 0.05.

(K) Boxplot representation of CAS across all regions. p values calculatedwith two-tailed t test on per-replicatemedian of score. ***p < 0.001, **p < 0.01, *p < 0.05.

(L) Same as (J) for YMP-treated mice.

(M) Same as (K) for YMP experiments.
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Figure S6. Acute DR causes brain-wide expression shifts in glia, related to Figure 6

(A) CAS shifts in response to aDR across all regions. p values calculated with two-tailed t test. Bonferroni correction; padj < 0.05. ***p < 0.001,

**p < 0.01, *p < 0.05.

(B) Same as (A) for YMP experiments.

(C and D) Expression of (C) Adipor2 and (D)Hif3amapped onto aDR hippocampus nuc-seq data. Quantification and statistical analysis are plotted on the right as

violin plots. Points indicate nuclei-wise expression levels, and the violin indicates the average distribution of expression split by age. (MAST, Benjamini-Hochberg

correction; false discovery rate [FDR] < 0.05 and logFC > 0.2 to be significant) ***p < 0.001, **p < 0.01, *p < 0.05.

(E) Boxplot representation of common aDR score across all cell types. p values calculated with two-tailed t test on per-replicate median of score. ***p < 0.001,

**p < 0.01, *p < 0.05.

ll
Article



(legend on next page)

ll
Article



Figure S7. Expression of disease-variant homologs across the brain is shifted as a result of age-related expression changes, related to

Figure 7

(A) Trem2 expression across all bulk regions, colored by age. Red lines indicate averaged-smoothed gene expression. Data are mean ± SEM.

(B) Analysis outline to probe brain-wide expression of GWASgenes at young and old age. Enrichment analysis of region-resolved DEGs for humanGWAS variants

for multiple sclerosis from Figure 7 is depicted. The expression of corpus callosum DEGs associated with MS GWAS hits was ranked across brain regions for

young (3 months) and old (26 months) age groups. Expression of two exemplary genes, Irf8 (top) and Nlrc5 (bottom) across bulk regions at 3 and 26 months is

depicted. The rank of mean expression for selected regions is highlighted.

(C) Boxplots displaying ranked expression changes from 3 to 26 months of up-regulated GWAS-DEGs for multiple sclerosis across regions, filtered for regions

with at least 15 genes to focus on trends with specific statistical power. Irf8 (green) and Nlrc5 (teal) rank changes in the corpus callosum are highlighted. Sig-

nificance determined by paired, pairwise Wilcoxon test between regions. ***padj < 0.001, **padj < 0.01, *padj < 0.05.

(D) Boxplot displaying the ranked expression changes from 3 to 26months of up-regulatedGWAS-DEGS for Alzheimer’s disease in the corpus callosum.Ms4a6d

(teal) highlighted. Significance determined by paired, pairwise Wilcoxon test between regions. ***padj < 0.001, **padj < 0.01, *padj < 0.05.

(E) Ms4a6d expression across bulk regions at 3 and 26 months. The rank of expression for selected regions is highlighted.
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