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The scarcity and inaccessibility of tissue from many developmen­
tal stages in patients with neurodevelopmental and neurode­
generative disorders highlights the need for advanced in vitro 

models of human brain development and maturation1,2. Indeed, recent 
advances make it possible to differentiate human pluripotent stem 
cells into self-organizing, three-dimensional (3D) cellular ensembles 
that recapitulate several features of human brain development3–5. One 
advantage of these organoid models is that they can be maintained for 
long periods of time5,6. However, they have not been comprehensively 
shown to progress beyond stages that are equivalent to mid-fetal 
cortical development3,4,7,8, and most organoid cultures have not been 
maintained for prolonged periods of time in vitro3,4,7,9.

We previously developed a directed method of differentiation of 
human pluripotent stem cells in suspension that does not involve 
embedding into matrices5. This approach generates dorsal forebrain 
organoids named human cortical spheroid (hCS) with high reliability 
that can be cultured for more than 20 months progressing from 
neurogenesis to astrogenesis6,10. However, no systematic, unbiased 
functional analysis has been performed to demonstrate maturation 
matching perinatal or postnatal stages3–5,7,8. Reaching these late 
stages is essential to model neurodevelopmental, neuropsychiatric 
and neurodegenerative disorders. Moreover, it is not known 
whether there are intrinsic programs that underlie important 
physiological transitions during development and maturation, such 
as N-methyl-d-aspartate (NMDA) isoform shifts and RNA editing, 
neither of which have been studied in 3D or two-dimensional (2D) 
human stem-cell-based models to date3–5,7,8.

Here, we leverage the ability to maintain human cortical organ­
oids in long-term cultures and perform functional genomic assays 
to rigorously assess correspondence to in vivo developmental  
progression and maturation. We demonstrate substantial parallels 
between in vitro and in vivo neurodevelopment at the epigen­
etic and transcriptomic levels, as well as preservation of known 
physiological transitions, including NMDA receptor signaling. By  
mapping risk genes onto gene expression trajectories across devel­
opment in this system, we also provide a searchable resource (Gene 
Expression in Cortical Organoids, GECO) to facilitate the choice 
of appropriate in vitro timepoints for modeling specific brain 
disease-causing genes.

Results
We cultured hCS differentiated from six hiPSC lines derived from 
five different individuals for up to 694 days in vitro (summarized 
in Extended Data Fig. 1a and Supplementary Tables 1 and 2) using 
a protocol that yields highly reliable hCS across experiments and 
cell lines5,11. In total, we collected 62 samples for RNA sequencing 
(from four individuals, five hiPSC lines) and 50 samples for DNA 
methylation (from five individuals, six hiPSC lines) at 13 time­
points (Extended Data Fig. 1a and Supplementary Tables 1 and 2). 
Due to the challenging nature of these long-term cultures, samples 
were collected at various timepoints up to the following maxi­
mum differentiation day for each line: 0307-1, 280 days; 1205-4,  
587 days; 2242-1, 652 days; 8858-1, 694 days; 8858-3, 652 days and 
H2096, 371 days.
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Methylation and transcriptional maturation of hCS. To assess 
whether hCS maturation over a long period of in vitro differentia­
tion paralleled in vivo development, we first analyzed the epigenetic 
clock12, which predicts chronological age based on the methylation 
status of CpG islands. We note that the epigenetic clock is unable to 
predict the precise culture age based on in vivo methylation, as the 
epigenetic clock is not calibrated for the tissue, or for the newer array 
type that we used13,14. Nevertheless, we observed a highly significant, 
monotonic correlation between the length of differentiation of the 
hCS in vitro and their predicted methylation age (coefficient of cor­
relation, r = +0.76, P = 1.57×10–10; Fig. 1a), consistent with continu­
ous and progressive maturation of these cultures over time.

To predict culture age more precisely using an independent 
genome-wide approach, we next applied a validated framework 
that permits unbiased, quantitative statistical comparison of gene 
expression during cortical maturation in vitro to the BrainSpan 
dataset, which represents an in vivo reference for cortical devel­
opment15–17. To assess the quality of the data, we first sought to 
verify whether the main driver of variance of gene expression in 
the system is the time of in vitro differentiation rather than other 
less relevant covariates (for example batch, individual or line). 
Principal component (PC) analysis of gene expression revealed 
that the top five PCs, which together account for 57.1% of vari­
ability, were all associated with differentiation time (Fig. 1b and 
Extended Data Fig. 1b). Hierarchical clustering also showed that 
the samples clustered by differentiation day and not by other 
covariates (Extended Data Fig. 1c). Variance partitioning further 
demonstrated that the largest driver of variance was time of dif­
ferentiation (median variance explained 29.2%), while the median 
value of variance explained for differentiation and cell line was 
<0.01% (Extended Data Fig. 1d). Reproducibility between sam­
ples from the same timepoint was high, both between (mean 
Spearman correlation 0.96, range 0.88–0.98) and within (mean 
Spearman correlation 0.95, range 0.88–0.98) individuals, similar 
to what we have previously reported11,18. We note that, as differen­
tiation progressed, this high correlation between lines decreased 
slightly from 0.96 at day 25 (range 0.95–0.98) to 0.92 at day 600 
(range 0.88–0.95) (Fig. 1c).

Cellular stress pathways (that is endoplasmic reticulum (ER) 
and glycolysis pathways) have previously been proposed to be 
upregulated during development of in vitro 3D organoids19,20. We 
were able to detect moderate expression levels of genes in these 
pathways both in vivo in BrainSpan, as well as in vitro (Extended 
Data Fig. 2a,b). We also detected ubiquitous expression of genes 
in these pathways in a large single-cell dataset consisting of 40,000 
cells collected from in vivo developing human cerebral cortex, 
consistent with the BrainSpan results21 (Extended Data Fig. 2c). 
Although we do observe that stress pathway genes are expressed at 
slightly higher levels in vitro than in vivo, they follow a flat trajec­
tory over time (Extended Data Fig. 2a,b). This is more consistent 
with a homeostatic state, and the absence of progressive stress or 
dysfunction.

We next compared changes in gene expression during the 
maturation of hCS to transcriptome changes observed in cortical 
development in vivo in humans16,17 using transition mapping—a 
quantitative method based on the rank-rank hypergeometric test15. 
At early timepoints (i.e., before 250 days in culture), hCS mapped 
to prenatal stages (stages 3–7), consistent with the observed devel­
opmental progression in vitro5,11 (Fig. 1d,e). By day 250, we started 
to observe a postnatal signature that became more evident by 
day 300. Between day 250 and day 300, hCS displayed a similar over­
lap with both prenatal and postnatal stages, whereas after day 300 
they showed increasing overlap with postnatal stages (stages 8–13) 
(Fig. 1d,e). Based on this analysis, the predicted transition between 
prenatal and postnatal stages occurs around 250–300 days (~8–
10 months) of in vitro differentiation.

Gene expression and gene network correspondence. Seeing this 
strong overall correspondence between in vitro and in vivo tran­
scriptomes, we next compared known biological processes occurring 
during the maturation of hCS to those occurring during in vivo cor­
tical development. Gene set enrichment of differentially expressed 
genes spanning prenatal stages in vitro (between day 25 and day 200; 
1,940 downregulated genes, 2,122 upregulated genes at FDR < 0.05; 
Extended Data Fig. 3a and Supplementary Table 3) showed that early 
embryonic proliferation and developmental processes were down­
regulated, while neuronal and synaptic-related genes were upregu­
lated, analogous to what was reported in vivo16 (Extended Data Fig. 3b  
and Supplementary Table 4). In contrast, in vitro stages that were 
similar to early postnatal stages (between day 200 and day 400; 992 
downregulated genes and 1,369 upregulated genes at false discovery 
rate (FDR) < 0.05; Extended Data Fig. 3a and Supplementary Table 3)  
showed enrichment for processes related to translation and corti­
cal neuronal development, including downregulation of forebrain 
generation of neurons, whereas terms associated with non-neuronal 
cell development and synaptic function (for example, regulation of 
long-term synaptic potentiation and neurotransmitter metabolic 
process) were upregulated, again corresponding to known in vivo 
processes16 (Extended Data Fig. 3b and Supplementary Table 4).

These parallels of in vivo biological processes being preserved 
in vitro were also observed when examining the expression trajec­
tories of markers for the major hCS cell types, including progeni­
tors, layer-specific cortical neurons and developing and maturing 
astrocytes (Fig. 2a–c). The expression of these cell markers followed 
trajectories similar to those found in vivo (Extended Data Fig. 3c), 
with radial glia markers peaking earliest, followed by neuronal 
markers and subsequently mature astrocyte markers reaching their 
highest level later, at around 350–400 days, when cultures start to 
resemble postnatal stages (Fig. 2a–c and Extended Data Fig. 3d). It 
is important to note that the downregulation of neuronal markers at 
late stages of differentiation, in both hCS and in vivo, may be due to 
the increase in the proportion of astrocytes, rather than an absolute 
reduction in the expression of these genes.

Notably, in agreement with previous reports showing that oligo­
dendrocyte precursor cells (OPCs), GABAergic neurons and microg­
lia were not present, or present in low proportion in hCS11,22,23, we 
found that the expression trajectories of markers for these cells types 
either did not follow cortical in vivo trajectories (i.e., GAD1 and 
PLP1) or were not detectable (i.e., AIF1, ITGAM) in hCS (Extended 
Data Fig. 3e). Markers for neuronal activity were only partially pre­
served in hCS (i.e., NPAS4 and ARC; Extended Data Fig. 3f), which 
is likely due to lack of typical physiological inputs.

To provide a more refined view of the trajectories of specific bio­
logical processes, we leveraged co-expression modules defined from 
in vivo brain development to directly examine the trajectories of 
in vivo processes in hCS15. These in vivo modules were previously 
annotated based on enrichment for processes associated with spe­
cific cell types15 (Fig. 2d). We verified that in vitro modules signifi­
cantly overlapped with these in vivo modules (Extended Data Fig. 4).  
As seen for single genes, the trajectories of these modules followed 
the expected in vivo sequence. Namely, the neuronal modules 
peaked at times matching prenatal stages (100–300 days in vitro; 
Fig. 2e) matching what is seen in vivo15,16. The glial processes were 
upregulated at early stages (day 25; Fig. 2e) corresponding to the 
proliferation of radial glia in vivo16, and then again at postnatal 
stages (400–600 days of differentiation; Fig. 2e) corresponding to 
the development and maturation of astrocytes in vivo6. Overall, 
these analyses demonstrate that the in vivo gene expression trajecto­
ries are paralleled during long-term in vitro hCS differentiation11,22.

Preservation of RNA editing. RNA editing, a major RNA process­
ing mechanism, is dynamically regulated during in vivo brain devel­
opment24. RNA editing has been shown to display developmental 
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trajectories that vary with maturation in vivo and are dependent on 
neuronal activity25. Recently, disruption of RNA editing was sug­
gested to play a role in autism spectrum disorder (ASD), further  

supporting its importance in brain function and dysfunction26. 
Despite its importance in brain development, global patterns of RNA 
editing have not been explored in hiPSC-derived brain organoids.
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Fig. 1 | Methylation and transcriptional maturation in long-term hCS. a, The predicted methylation age (DNAmAge) of hCS is monotonically correlated with 
the in vitro differentiation day (r = +0.76, P = 1.57×10–10, two-sided Pearson correlation test, n = 50 from six hiPSC lines derived from five individuals). Colors 
denote individual hiPSC lines. The shaded gray area represents the 95% confidence interval. b, Scatterplot of the first two PCs of gene expression data. 
Color represents differentiation day. Numbers in brackets on axis titles are the percent of variance explained by the PC. c, Spearman’s correlation of gene 
expression between samples from the same timepoint that were derived either from different individuals (red) or from the same individual (blue) (n = 62 
samples from five hiPSC lines derived from four individuals). Boxplots: center, median; lower hinge, 25% quantile; upper hinge, 75% quantile; whiskers 
extend to ±1.5× interquartile range. d, Transition mapping (TMAP) of gene expression of hCS (compared to differentiation day 25) and human primary tissue 
from the BrainSpan dataset (compared to stage 2). e, BrainSpan stages and corresponding age. PCW, post conception weeks; M, months; Y, years.
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To assess editing in vivo, we identified two modules of coor­
dinated RNA editing in the in vivo BrainSpan data16: BSeditM1, 
which increased in editing rates during development, especially in 
late prenatal and early childhood (stages 6–9) and BSeditM2, which 
was slightly decreased in editing rates during development (Fig. 3a). 
Both in vivo modules were moderately preserved in the in vitro data 
(ZsummaryBSeditM1 = 9.3, ZsummaryBSeditM2 = 5.3) (Fig. 3b), showing 
preservation of in vivo RNA editing processes in hiPSC-derived 
brain organoids.

We next examined the expression of the major RNA editing 
enzymes and regulators. In vivo, ADAR expression increases post­
natally, ADARB1 expression increases prenatally, followed by rela­
tively stable expression postnatally, and FXR1 expression decreases 
prenatally26; these followed a similar trend in vitro (Fig. 3c). 
Expression levels of FMR1 increased prenatally both in vivo and in 
hCS. However, the subsequent postnatal increase in expression seen 
in vivo was not observed in hCS (Fig. 3c). Immunohistochemistry 
confirmed the transcript level analysis and suggested that FXR1 pre­
dominantly localized to ventricular zone (VZ) areas and appeared 
downregulated at later stages in neurons (Fig. 3d).

To test whether ADAR, ADARB1 and FXR1 potentially drive 
RNA editing in vitro, we identified editing modules in hCS (Fig. 3e) 
and correlated the module eigenvalues with the expression of the 
editing enzymes and regulators. We found that one module, hCSe­
ditM2, was significantly correlated with the expression of the editing 
related genes FXR1 (r = −0.32, FDR = 0.04) and ADAR (r = +0.60, 
FDR = 5.1×10–6) (Fig. 3f). Interestingly, FXR1 has previously been 
shown to inhibit editing by interacting with ADAR26, and this inter­
action regulates RNA editing sites dysregulated in ASD26. hCSeditM2 
also significantly overlapped with the temporally increasing in vivo 
module BSeditM1 (odds ratio (OR) = 1.8, FDR = 2.3×10–4; Extended 
Data Fig. 5a). The hCSeditM2 module eigengene increased in expres­
sion over stages matching prenatal in vivo development (before 
250 days) and plateaued at stages resembling postnatal periods (after 
350days) (Fig. 3e), very similar to the trajectory of the increasing 
in vivo module BSeditM1 (Fig. 3a).

To further support their potential to regulate RNA editing, we 
tested whether FMRP and FXR1P locally bind to the mRNA in 
close proximity to the editing sites of the genes in the module by 
integration with enhanced cross-linking and immunoprecipitation 
(eCLIP) data from the FMRP and FXR1P proteins in the adult 
human brain26. We observed that the editing sites that we identified 
in both the hCS and the BrainSpan modules have highly significant 
proximity to both FMRP and FXR1P binding sites (Fig. 3g and 
Extended Data Fig. 5b). These results support the claim that 
FMRP and FXR1P regulate brain-related editing modules through 
proximity-mediated interactions26. To investigate whether the target 
editing sites of FMRP or FXR1P were similar between BrainSpan 
and hCS modules, we measured the overlap of editing sites within 
1 kb of a CLIP site of FMRP or FXR1P. We found that FXR1P 
targeted editing sites significantly overlapped between BSeditM1 
and hCSeditM1 (OR = 7.71, FDR = 6.18 × 10–57) and hCSeditM2 

(OR = 2.16, FDR = 5.31×10–4), which also showed a conserved 
trajectory, increasing over differentiation time in vitro (Extended 
Data Fig. 5c). Taken together, the methylation, gene expression 
and RNA editing data paint a coherent picture, indicating that hCS 
reach a state of postnatal maturation between 250 and 300 days.

Canonical isoform switching in development. To further vali­
date known transitions that occur with development and matura­
tion, we assessed isoform switches in specific protein complexes 
related to histone modifying complexes and neurotransmitter sig­
naling that characterize the transition from prenatal to postnatal 
stages of brain development27–29. One canonical switch is in the 
histone deacetylation (HDAC) complex, in which the more highly 
expressed isoform HDAC2 diminishes and isoforms HDAC1 and 
HDAC11 increase in expression27,30 (Fig. 4a), which plays a role in 
fate specification and synapse maturation27. Indeed, we observed 
a switch in the HDACs, with an increase in HDAC1 and HDAC11 
and a concomitant decrease in HDAC2 in hCS. We note that, while 
HDAC1 is downregulated postnatally in vivo, it remains upregu­
lated in hCS (Fig. 4a). We speculate that perhaps cell types not 
present in hCS, or activity-dependent processes that occur in vivo31 
may contribute to changes in HDAC enzyme expression in vitro 
at later stages. We also assessed whether these enzymes show 
cell-type-specific enrichment, which could contribute to the dif­
ferences in postnatal expression. Using immunohistochemistry, we 
observed that HDAC2 was expressed in both progenitors and neu­
rons, although it appeared more highly expressed in progenitors, 
consistent with its downregulation over time (Fig. 4b and Extended 
Data Fig. 6a). Additionally, using a mid-fetal single-cell dataset21, 
we found that HDAC1, HDAC2 and HDAC11 did not show sig­
nificant cell-type-specific enrichment at that timepoint (Extended 
Data Fig. 6b), which is more equivalent to the later timepoint 
in vitro (day 131).

Another critical neurodevelopmental switch is the change in the 
NMDA receptor subunits from GRIN2B (also known as NR2B or 
GluN2B) to GRIN2A (also known as NR2A or GluN2A) (Fig. 4c)28 
and from GRIN2D to GRIN2C29 (Fig. 4c). The progressive change 
in subunit expression results in a switch around birth28 and has a 
profound effect on channel function, including how it responds to 
allosteric modulators32. In vivo, we observed the subunit shift at the 
transcriptional level occurring soon after birth (BrainSpan stage 8; 
0–6 months after birth; Fig. 4c). Interestingly, in hCS we observed a 
switch in NMDA receptor subunits at the time when cultures are pre­
dicted to transition from prenatal to postnatal stages based on their 
transcriptomic patterns (day 250–300 of differentiation; Fig. 4c).  
Using western blotting for GRIN2A and GRIN2B in hCS from 
day 51 to day 408, we found that the level of GRIN2A appeared to 
increase with time, and the level of GRIN2B seemed to peak at 200–
250 days and decreased at later timepoints (350–400 days; Fig. 4d,e 
and source data). The protein trajectories mirrored the trajectories 
seen at the RNA level (Fig. 4c), with the switch between the two 
subunits occurring between 250 and 300 days (Fig. 4c–e).

Fig. 2 | Biological processes and cell-type marker changes in long-term hCS. a, Normalized expression (log2) of marker genes for neurons, intermediate 
progenitors, astrocytes and radial glia as well as superficial and deep layer neurons. Neuronal and intermediate progenitor markers are initially expressed 
at high levels and decrease after day 250. Astrocyte markers increase in expression with time and peak after day 300. Radial glia markers decrease in 
expression as hCS advance in differentiation. b, Immunohistochemistry of progenitors and neuronal markers at day 61 (d61; line 0524-1), day 201 (d201; 
line 8858-1) and day 328 (d328; line 2242-1) showing expression of glial fibrillary acidic protein (GFAP) in VZ–like regions and the deep and superficial 
layer markers CTIP2 (also known as BCL11B) and BRN2 (also known as POU3F2). c, Immunohistochemistry for the astrocyte markers GFAP and SOX9 
at day 200 (d200; line 2242-1) and day 552 (d552; line 8858-1). Immunohistochemistry experiments were performed twice with similar results (1–3 hCS 
per line from at least two hiPSC lines were included). Scale bars, 50 μm (b, c). d, Groups and GO term annotations of in vivo WGCNA modules performed 
by Stein et al15. e, Scaled mean expression of neuronal and glial module genes. The neuronal modules peaked at ~day 200; the glial modules decreased 
in expression until about differentiation day 150 and then increased in expression to peak around day 500. In a and e the shaded gray areas around the 
trajectory lines represent the 95% confidence intervals and the vertical grays denote the shift from prenatal to postnatal gene expression based on 
matching to in vivo patterns. In a and e, n = 62 samples from five hiPSC lines derived from four individuals.
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This switch, which results in a greater contribution of the 
GRIN2A subunit to the NMDA complex, is associated with changes 
in the functional properties of the channel32. To verify that this 

results in physiological changes in hCS neurons, we measured the 
magnitude of NMDA receptor activity at early (days 54–156 of dif­
ferentiation; GRIN2B predominant) and late (days 307–523 days of  
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differentiation; GRIN2A predominant) developmental timepoints. 
We performed voltage clamp recording of neurons in hCS slices while 
applying pulses of NMDA to measure the summation of the NMDA 
response throughout the cell independent of subcellular recep­
tor localization (Fig. 4f). We found that the magnitude of NMDA 
responses increased over time in vitro (r = +0.63, P = 6.94×10−4; 
Fig. 4g). Importantly, there was a significant negative association 
between the reduction in total NMDA response after application 
of the GRIN2B-specific antagonist ifenprodil (IFN) and the total 
time of differentiation mirroring the reduction seen in the GRIN2B 
subunit (beta logit regression B = −0.003, P = 1.58×10–3) (Fig. 4h). 
This demonstrates that changes observed in hCS at the RNA and 
protein level result in physiological changes that are consistent with 
the presence of a greater proportion of GRIN2B-enriched NMDA 
receptors at early compared to later developmental timepoints.

Disease risk gene trajectories. One of the goals of these model sys­
tems is to guide a biological understanding of brain disorders. We 
therefore mapped genes associated with ASD (Fig. 5a), intellectual 
disability (ID; Fig. 5b) and schizophrenia (SCZ; Fig. 5c) onto these 
gene expression data to see if there were specific expression patterns 
associated with subsets of risk genes and whether they were shared 
between disorders.

We performed unsupervised hierarchical clustering of 
disorder-associated genes based on the temporal expression pat­
terns in hCS, which identified clusters representing distinct tempo­
ral trajectories in each disorder (Fig. 5 and Supplementary Table 5).  
Annotation with gene ontology (GO) and a cell type enrichment 
analyses (Methods) revealed that each of these clusters represent 
different developmental trajectories, as well as specific biological 
processes and cell types (Fig. 5).

ASD and SCZ risk genes each clustered into five developmental 
trajectories, whereas ID genes formed four clusters. We found 
three trajectory patterns shared across disorders. One trajectory 
seen in ASD-C3, ID-C4 and SCZ-C2 peaked at around 150 days 
of differentiation (Fig. 5). These clusters were all enriched for both 
excitatory and inhibitory neuronal genes, as well as for synaptic 
related GO terms, such as modulation of chemical synaptic 
transmission (ASD-C3), synapse organization (ID-C4) and calcium 
ion transmembrane transport (SCZ-C2) (Fig. 5). Another shared 
trajectory was seen in ASD-C2 and ID-C1, which were highly 
expressed at the peak of neurogenesis (<150 days) and gliogenesis 
(>300 days) (Fig. 5a,b). These clusters were enriched for progenitor 
cell type genes (radial glia and intermediate progenitors) and for 
histone modification and covalent chromatin modification GO 
terms, and they were not conserved in SCZ. Although SCZ-C3 
showed a similar trajectory to ASD-C2 and ID-C1, it was not enriched 
for any cell type, but was enriched for protein translation-related 
GO terms, such as aminoacyl-tRNA ligase activity (Fig. 5c). The 
third shared trajectory peaked in expression at later stages of 
differentiation (>250 days) and was found in ASD-C5, ID-C3 
and SCZ-C1. These clusters were all enriched for astrocyte genes; 
however, they did not share common biological processes across 

disorders, indicating that different pathways may be impacted (Fig. 
5). These three trajectories were also seen in genes associated with 
epilepsy (Extended Data Fig. 7a). Most of the epilepsy genes (62%) 
were found in the cluster epilepsy-C3 that peaked at day 150. This 
cluster was enriched for GO terms related to ion channel activity and 
for excitatory and inhibitory neuronal genes. However, a substantial 
proportion of genes (20%; epilepsy-C2) peaked at much later stages 
of differentiation (>250 days), and these were not enriched for any 
cell type (Extended Data Fig. 7a).

We next mapped genes associated with two neurodegenerative 
disorders: Alzheimer’s disease (AD; Fig. 6a) and Parkinson’s dis­
ease (PD; Fig. 6b). We found that the majority of clusters (3 out 
of 4 in AD and 3 out of 4 in PD) showed peak levels of expression 
at late timepoints (>250 days), corresponding to predicted postna­
tal stages. One of these late-peaking clusters in AD (AD-C1) con­
tained the familial Alzheimer’s-associated genes APOE, APP and 
PSEN2, and was associated with amyloid-beta formation—a hall­
mark of AD (Fig. 6a). In PD, genes associated with Mendelian forms 
of the disease, such as PRKN, UCHL1, SNCA, PARK7, PINK1 and 
LRRK2, were all found in clusters that peaked later in differentiation 
(>250 days; PD-C1 and PD-C2; Fig. 6b). Genes associated with two 
other related neurodegenerative diseases—progressive supranuclear 
palsy (PSP) and frontotemporal dementia (FTD)—formed two clus­
ters that also peaked late in differentiation (Extended Data Fig. 7b).

At least one cluster in each disorder peaked in expression at 
later stages of neural differentiation (>250 days), which empha­
sizes the need for long-term maturation to study the role of these 
disease-related genes. These clusters can guide the selection of 
appropriate timepoints and cell types to model specific disorders 
with hiPSC-derived neural cultures. Genes in some of the clusters, 
such as ASD-C3, ID-C4, SCZ-C2, epilepsy-C3, AD-C2 and PD-C3, 
could be used in early stage hCS models, whereas genes in clusters 
ASD-C5, ID-C3, SCZ-C1 and AD-C1, epilepsy-C2, AD-C1, PD-C2 
and FTD/PSP-C1, may require cultures beyond 250 days in vitro. To 
allow detailed comparison between in vivo and hCS gene trajecto­
ries, we provide a webtool named GECO that allows the concomitant 
examination of gene trajectories in hCS and in BrainSpan (https://
labs.dgsom.ucla.edu/geschwind/files/view/html/GECO.html).

Discussion
We performed multiple independent analyses of functional genomic 
features to comprehensively assess to what extent in vitro hCS reca­
pitulate in vivo cortical maturation. We observe substantial conver­
gence across these different data types, which indicates attainment 
of early postnatal maturation between 250 and 300 days in vitro. 
To our knowledge, this is the first multi-level demonstration that 
an in vitro model of human neural development has matured suf­
ficiently to acquire some postnatal features. This includes several 
important features of RNA editing and a major physiological transi­
tion involving the switch in the ratio of NMDA receptor subunits 
that occurs postnatally in mammals28. Our results suggest that 
hCS mature both at the level of individual cells, as evident by the 
NMDA receptor isoform switch, as well as some aspects of cellular  

Fig. 3 | RNA editing in hCS. a, Trajectories of in vivo (BrainSpan) RNA editing modules. b, Preservation scores (Z summary) of the in vivo RNA editing 
modules in hCS. c, Trajectories of RNA editing enzymes in hCS (top) and in vivo from BrainSpan (bottom). d, Immunohistochemistry of the RNA editing 
regulator FXR1 with the glial and neuronal markers GFAP and CTIP2 (also known as BCL11B) at day 61 (d61; line 0524-1), at day 131 (d131; line 1205-4),  
at day 200 (d203; line 1205-4) and at day 328 of differentiation (d328; line 2242-1). Scale bars, 50 μm. Immunohistochemistry experiments were 
performed once for d61, twice for d131 and d203 and three times for d328 (1–3 hCS per line from at least two hiPSC lines were included). e, Trajectories 
of the three hCS RNA editing modules. f, Correlation of module eigenvalues with the expression of the major known RNA editing enzymes and regulators. 
g, Distributions showing the closest distances between editing sites from hCS editing modules and FMRP or FXR1P eCLIP peaks (blue). The median of 
10,000 sets of control sites (black) is depicted for comparison. See Methods for details of permutation-based two-sided P value calculation. N indicates 
the number of editing sites shown. *FDR < 0.05, ***FDR < 0.005. In a, c and e, the shaded gray area around the trajectory represents the 95% confidence 
interval, vertical gray lines represent birth, and vertical gray bars denote the shift from prenatal to postnatal gene expression based on matching to in vivo 
patterns. In c (top row) and e, n = 62 samples from five hiPSC lines derived from four individuals. In a and c (bottom row), n = 196 from 24 individuals.
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composition, as shown by the emergence of superficial layer neurons 
and astrocytes at later stages. It is important to note that some changes 
in gene expression are likely due to changes in cell proportions.

We also show that genes associated with neurodevelopmental and 
neurodegenerative disorders are not monolithic in their expression, 
but fall into distinct development trajectories. These trajectories  
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include those peaking both before 100 days and after 250 days 
(for example, ASD-C2 and ID-C1), which represent histone 
modification in progenitor cells; those peaking between 100 and 150 
days (for example, ASD-C3, ID-C4 and SCZ-C2), which represent 
synaptic structure and function in neuronal cell types; and those 
with late expression trajectories, which are related to astrocyte 
biology (for example, ASD-C5, ID-C3 and SCZ-C1). This timing 

should be considered when establishing in vitro models of disease. 
For example, mutations in the astrocyte-related gene HEPACAM, 
which is part of the ASD-C5 cluster (Fig. 5a), should be studied at 
later stages of differentiation (> 250 days), while the consequences 
of mutations in the neuronal transcription factor MYT1L, which 
is part of ASD-C3 (Fig. 5a), can likely be probed in early stages of  
neural differentiation.

1.8
*

Cluster4

Cluster3

Cluster2

Cluster1

All genes

0 2 4 6

Phospholipase binding

Adult locomotory behavior

Negative regulation of hydrogen
peroxide-induced cell death

Negative regulation of response to
reactive oxygen species

Transcription factor binding

snRNA binding

Positive regulation of heart
contraction

Positive regulation of heartrate

−log10(P)

1.5
**

Cluster4

Cluster3

Cluster2

Cluster1

All genes

R
ad

ia
l g

lia IP

G
lu

tN IN

As
tro

cy
te

O
PC

Cell type

R
ad

ia
l g

lia IP

G
lu

tN IN

As
tro

cy
te

O
PC

Cell type

0 2 4 6 8

Amyloid precursor protein
catabolic process

Amyloid−beta metabolic process

Positive regulation of cell
projection organization

Tau protein binding

Phosphatase regulator activity

Phosphatase inhibitor activity

Myeloid dendritic cell
activation

Notch receptor processing

−log10(P)

C1

C2

C3

C4

0

20
0

40
0

60
0

−0.4

0

0.4

−0.4

0

0.4

−0.4

0

0.4

−0.4

0

0.4

Differentiation day

Ei
ge

ng
en

e

C1

C2

C3

C4

0

20
0

40
0

60
0

−0.4

0

0.4

−0.4

0

0.4

−0.4

0

0.4

−0.4

0

0.4

Differentiation day

Ei
ge

ng
en

e

Prenatal Postnatal

1

2

3

4

Differentiation
day

GCH1
TPM1
RPAP1
NUCKS1
NCKIPSD
CCNT2
KAT8
LACTB
STK39
LSM7

LRRK2*
CTSB
PARK7*
PINK1*^
CD38
TLN2
SLC41A1
UCHL1*^
ATP6V0A1
SNCA*^
TMEM229B
PRKN*^

Scaled expression
−4 −2 0 2 4

Prenatal Postnatal

1

2

3

4

Differentiation
day

PSEN1*
WIPI2
BCAM
EPHX2
CD2AP
ENAH
ZNF646
CNN2
CSTF1
PPP1R35
KAT8
MARK4
CEACAM19
GAL3ST4
NYAP1
FBXL19

APP*
PSEN2*
SCARA3
CLU
FERMT2
APOE*
SORL1
SLC24A4

Scaled expression
−4 −2 0 2 4

AD
PD

Differentiation day
25

50

75

100

150

200

250

300

350

400

500

600

b

a Module trajectory GO term enrichment Cell type enrichmentClustering
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The majority of these cluster trajectories follow in vivo trajec­
tories. One exception is the neuronal activity-dependent clusters 
(i.e., ASD-C3, SCZ-C2 and epilepsy-C3), which do not show strong 
fidelity at late stages of differentiation (>400 days) likely due to the 
lack of extensive network activity in hCS. We provide the GECO 
tool to allow detailed comparison between in vivo and hCS trajec­
tories. We note that the gene trajectories presented in this webtool 
were derived from a directed hCS differentiation protocol, and 
other differentiation protocols and cell lineages from other brain 
regions may exhibit different timelines of maturation.

One caveat of this study is that culturing hCS for long periods 
of time is not trivial, leading us to collect samples as they became 
available. This is the reason three lines do not have samples from the 
entire timecourse. It is also important to note that, after 400 days of 
differentiation, we observed an increase in the variability of the hCS 
differentiation (Fig. 1c). Reducing this variability will be essential 
for modeling disease at these very late stages of differentiation, as 
will development of methods to accelerate this process.

Previous studies in brain organoids have suggested that glycoly­
sis and ER stress are highly upregulated in these systems, reflecting 
a state of cell stress19,20. If this were the case, we would expect to see 
these pathways increasing over time, reflective of progressive cel­
lular stress in vitro, since cellular stress is not a homeostatic state33. 
However, our analysis shows that the trajectories of these pathways 
remain flat during differentiation for up to 21 months in vitro. 
Moreover, we were able to detect robust levels of many ER stress 
and glycolysis genes in vivo in the BrainSpan dataset. Our ability 
to detect more robust in vivo expression of genes involved in these 
stress pathways may be due to higher levels of gene detection in 
bulk RNA sequencing compared to the single-cell RNA sequenc­
ing data used previously19,34. However, we note that we were also 
able to detect them at similar levels in another in vivo single-cell 
dataset from fetal cortex21. Thus, our interpretation of these data 
is that the slightly higher, but relatively constant, elevation of these 
genes involved in glycolysis in vitro likely reflects the different, but 
homeostatic metabolic state with respect to glucose utilization that 
has been observed across in vitro cell culture systems35,36.

Our findings also support the interpretation that key features 
of human corticogenesis are guided by an internal differentiation 
clock. This is consistent with findings in mouse showing that major 
features of the progression of cortical neurogenesis are governed by 
intrinsic factors and do not require extrinsic signals from other brain 
regions—observations that warrant further study and refinement37,38. 
Although reaching later stages of development in vitro is currently 
time consuming (>250 days), it nevertheless extends the value of 
hiPSC-derived in vitro 3D cultures by providing a platform to study 
the processes occurring during late fetal and early postnatal stages 
of brain development. The presence of continual time-dependent 
aging in hCS also indicates that these cellular models could be used 
to model epigenetic aspects of aging, which has been shown to cap­
ture key biological features associated with aging39.

It is important to note that while our model system was able 
to capture key features of in vivo human corticogenesis, some 
important aspects still require further investigation. Alternative 
splicing plays an important role in neural development40; how­
ever, detecting significant alternative splicing will require a more 
deeply sequenced and extensive set of in vivo and in vitro samples. 
Another aspect requiring further investigation is the role of cells 
not born in the dorsal forebrain on the maturation of hCS. For 
example, ventral forebrain-derived GABAergic neurons promote 
synaptic maturation and network maturation31. These effects could 
be studied in forebrain assembloids, in which we have previously 
shown that GABAergic interneurons migrate and functionally 
integrate into the cortical network22. It will be important to assess 
how network dynamics mature in the presence of GABAergic neu­
rons to establish the excitation–inhibition balance, which has been 

linked to neurodevelopmental disorders41. Microglia, which are 
mesoderm-derived, also play an important role in the developmen­
tal maturation of the cerebral cortex42, and previous studies have 
shown successful integration of microglia-like cells into human 
brain organoids43. Lastly, strategies to derive oligodendrocytes23 or 
vascular-forming endothelial cells44 in assembloids will also be use­
ful to investigate how they modulate developmental trajectories in 
long-term hCS cultures.

Additionally, while we identified preservation of some aspects 
of RNA editing in hCS, this preservation was not complete. For 
instance, ADRAB2 had a far less dynamic pattern in hCS than 
in vivo. Moreover, while the prenatal expression trajectories of 
FXR1 and FMR1 in hCS were similar to those seen in vivo, hCS at 
later stages did not track the in vivo trajectories. We speculate that 
this could be related to neuronal activity-dependent processes25,45. 
For example, RNA editing of the AMPA receptor GluA2 (GRIA2 
gene) is highly dependent on neuronal activity45. Our results suggest 
that alterations in the balance of the RNA editing process may be 
used as a measure for optimizing and enhancing the functional 
similarities between these 3D in vitro models and in vivo brain 
development. Another important challenge remains to find ways to 
enhance this maturation speed to further facilitate more efficient 
in vitro modeling, including features that may be dependent on 
certain forms of neuronal activity and aging. This is especially true 
for modeling neurodegenerative disorders. Our approach provides 
a framework for comprehensive analysis of such features.
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Methods
Culture of hiPSC and differentiation into hCS. All hiPSC lines used in this study 
were validated using previously described standardized methods5,22,46. Cultures 
were maintained mycoplasma free and were periodically tested for mycoplasma 
contamination. A total of six hiPSC lines were collected from five healthy subjects 
(four male and one female). The hiPSC H20961 line was derived by the Gilad 
Laboratory (University of Chicago). Approval for this study was obtained from 
the Stanford Institutional Review Board (IRB) panel, and informed consent was 
obtained from all subjects. hiPSC were cultured on inactivated mouse embryonic 
fibroblast feeders (EmbryoMax PMEF; Millipore) in DMEM/F12 (1:1, Life 
Technologies, 11330) containing 20% knockout serum (Life Technologies, 10828), 
1 mM non-essential amino acids (Life Technologies, 11140), 1:200 GlutaMax 
(Life Technologies, 35050), 0.1 mM β-mercaptoethanol (Sigma-Aldrich, M3148) 
and 10 ng ml−1 FGF2 (R&D Systems, 233-FB) diluted at 0.1% BSA in DPBS (Life 
Technologies, 14190).

hCS were generated as previously described5. Intact hiPSC colonies were lifted 
using 0.7 mg ml−1 dispase and transferred to ultra-low-attachment plastic dishes 
(Corning) in the same hiPSC medium without FGF2 but supplemented with 5 μM 
dorsomorphin (Sigma-Aldrich) and 10 μM SB-431542 (Tocris), both of which 
are SMAD inhibitors, and 10 μM Y-27632 (EMD Chemicals), which is a ROCK 
inhibitor. From day 2 (48 h of differentiation), the medium supplemented with 
dorsomorphin and SB-431542 was changed daily. From day six until day 24, neural 
spheroids were grown in neurobasal-A (Life Technologies, 10888) neural medium 
supplemented with B-27 supplement without vitamin A (Life Technologies, 
12587), 1:100 GlutaMax (Life Technologies), 1:100 penicillin and streptomycin 
(Life Technologies, 15070) and with 20 ng ml−1 EGF (R&D Systems, 236-EG) and 
20 ng ml−1 FGF2 (R&D Systems, 233-FB). From day 25 to 42, the neural medium 
was supplemented with 20 ng ml−1 BDNF (Peprotech, 450-02) and 20 ng ml−1  
NT3 (Peprotech, 450-03) and medium was changed every other day. From day  
43 onwards, hCS were maintained in unsupplemented neural medium with 
medium changes every 4 days. hCS of similar diameter were randomly selected  
for experiments.

RNA sequencing. RNA sequencing was performed as previously described11. 
Briefly, libraries were prepared using Truseq stranded RNA RiboZero Gold 
(Illumina) and were sequenced using 100-bp paired end reads on an Illumina 
HiSeq 4000. Reads were then mapped to hg38 with Gencode v.25 annotations 
using STAR (v.2.5.2b)47. Gene expression levels were quantified using RSEM 
(v.1.3.0)48. Genes with low levels of expression (less than ten reads in more than 
20% of the samples) were removed from the analysis. Outliers were then removed 
using standardized sample network connectivity (Z scores smaller than –3)49. 
This method identified two samples as outliers, both of which were >600 days. 
To quantify the technical variation in the RNA sequencing, we calculated the first 
five PCs of the Picard sequencing metrics (http://broadinstitute.github.io/picard/; 
v.2.5.0). These PCs, referred to as seqPC1–seqPC5, were then included in the  
linear model.

To help control for variability between the individuals racial background, we 
used the GATK (v.3.3) haplotype caller to call single nucleotide polymorphism 
(SNPs) from the aligned reads50. We filtered for sites with missing genotypes 
(>5%), rare minor allele frequency (<0.05) and out of Hardy–Weinberg 
equilibrium (<1×10–6)51. Genetic ancestry was inferred by running 
multidimensional scaling (MDS) on these high-quality SNPs together with 
HapMap3.3 (hg38). The first two MDS values, referred to as ancestryPC1/2, were 
then included in our linear model. For principal component analysis (PCA), as 
well as to visualize single gene trajectories, gene expression was normalized using 
CQN (without quantile normalization, sqn = FALSE) (v.1.28.0) and ancestryPC1-2 
and SeqPC1-5 were regressed out before batch correction using Combat52 from the 
sva package (v.3.30.0) in R. Single gene trajectories trends lines were fitted using 
the loess method53 from the ggplot2 package54 in R. PCA was calculated using the 
prcomp function in R on scaled normalized and batch corrected counts.

BrainSpan RNA sequencing data analysis. The BrainSpan RNA sequencing data16 
was used as an in vivo reference for the analysis. To quantify gene expression at 
each developmental stage, the cortical samples were aligned to hg38 using Gencode 
v.25 annotations via STAR47. Gene expression was then quantified using the union 
exon model in featureCounts55. We removed low quality samples in which the RNA 
integrity number (RIN) was lower than 8, there were less than 25% coding bases or 
ribosomal bases made up more than 25% of total bases (as called by Picard tools). 
Genes with low levels of expression (less than ten mapped reads in more than 80% 
of the samples) in a given developmental stage were removed. We retained 196 
samples from 24 individuals (9 female and 15 male).

Transition mapping. To compare in vivo and in vitro changes in gene expression 
during maturation we used transition mapping15, which utilizes a rank–rank 
hypergeometric test56. To this end, both in vivo and in vitro gene expression levels 
were normalized using the trimmed mean of M-values (TMM) method from the 
edgeR package57 (v.3.24.0). In vitro samples were grouped to the closest 25th day 
in the first 100 days, closest 50th day in between days 100 and 400 and closest 100 
day until day 600. Timepoints above day 600 were included in the 600 day group 

resulting in the following groups 25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 
500 and 600. Fold change was calculated for each differentiation day (in vitro) or 
developmental stage (in vivo) by comparing it to the baseline values of the earliest 
day in vitro (day 25) or earliest stage in vivo (stage 2; 8–10 post conception weeks, 
PCW16) using the limma-voom method58 from the limma package (v.3.38.2) 
in R. To account for multiple samples coming from the same individual, we 
used brainID (for the BrainSpan data) or IndividualID (for the hCS data) as 
blocking factors in the model. The linear model used was ~0 + Differentiation 
day + batch + PC1 + racePC2 + SeqPC1 + SeqPC2 + SeqPC3 + SeqPC4 + SeqPC5 
for the hCS data and ~0 + Period + Ethnicity + PMI + SeqPC1 + SeqPC2 for 
the BrainSpan data. Genes were then ranked by logFC and the rank–rank 
hypergeometric test56 was used to calculate the significance of the overlap of the 
gene list using a step size of 200 genes15.

DNA methylation age. To calculate the DNA methylation (DNAm) age of the 
samples12, DNA was extracted using the AllPrep DNA/RNA/miRNA Universal 
Kit (Qiagen, 80224). Methylation levels were measured using the Infinium 
MethylationEPIC BeadChip Kit (Illumina), normalized using the Noob method59, 
and were then used to calculate DNAmage12. DNAmage was averaged over 
technical replications. We evaluated only clocks that were designed for non-blood 
tissues, that is, the pan tissue clock12 and the in vitro clock14. We were unable to 
predict the culture age using this methylation age, as these epigenetic clocks are not 
calibrated for the array type13 and those using these arrays do not perform well in 
brain tissue14. Results were similar between the two methods, and we present the 
results of the pan tissue clock.

Gene set enrichment analysis. Gene set enrichment analysis (GSEA) was 
performed using the fgsea package (v.1.8.0)60 on all genes ranked by log fold change 
(using limma-voom as described above) at different timepoints. GO gene sets 
(v.7.0) were downloaded from http://software.broadinstitute.org/gsea/msigdb/. Sets 
with less than 30 or more than 500 genes were omitted. P values were calculated 
using 1,000,000 permutations and were corrected using the Benjamini–Hochberg 
(BH) method. Gene sets with FDR <0.05 were considered to be significant and the 
top three up- and downregulated sets were plotted.

Weighted gene network analysis. To compare trajectories of genes networks 
between in vivo an in vitro datasets, previously described in vivo network modules 
were used15. To assure that the same networks were present in vivo, weighted 
gene network analysis (WGCNA) was performed on the in vitro data using a soft 
power of 12, minimal module size = 100, deep split = 2, cut height for creation of 
modules = 0.9999 and cut height for merging modules of 0.1. The modules were 
then tested for overlap with the in vivo modules using Fisher’s exact test61. To 
visualize the trajectories of the different modules that overlapped with the in vitro 
module, the normalized average expression was calculated using the module 
Eigengenes function from the WGCNA package62 (v.1.68) in R. The trend line was 
fitted using the loess method53 from the ggplot2 package54 in R.

Human tissue. Human brain tissue was obtained under a protocol approved by the 
Research Compliance Office at Stanford University. PCW21 forebrain tissue was 
fixed immediately upon arrival.

Immunohistochemistry. Immunohistochemistry was performed as described22,63. 
Briefly, hCS were fixed in 4% paraformaldehyde (PFA) for 2 h at 4 °C. Samples 
were then washed with phosphate-buffered saline (PBS) three times, transferred 
to a 30% sucrose solution and, 48–72 h later, embedded and snap frozen in a 30% 
sucrose and OCT solution (1:1 ratio; Tissue-Tek OCT Compound, 4583, Sakura 
Finetek). Cryosections (16 μm) were obtained using a cryostat (Leica). Human 
cortical tissue was fixed overnight in 4% paraformaldehyde and 30 μm cryosections 
were made. All sections were incubated for 1 h at room temperature with blocking 
solution (10% normal donkey serum and 0.3% Triton-X in PBS), and then 
overnight with primary antibodies. The following primary antibodies were used: 
anti-BRN2 (Mouse, 1:500, Millipore, MABD51), anti-CTIP2 (Rat, 1:300, Abcam, 
ab18465), anti-FXR1 (Mouse, 1:50; Santa Cruz, sc-374148), anti-GFAP (Rabbit, 
1:1,000, Dako, Z0334), anti-GFAP (Rat, 1:1,000, ThermoFisher Scientific, 13-0300), 
anti-HDAC2 (Mouse, 1:50, Santa Cruz, sc-9959), anti-MAP2 (1:5,000, Synaptic 
Systems, 188004) and anti-SOX9 (Goat, 1:500, R&D Systems, AF3075). After 
three PBS washes, sections were incubated with Alexa Fluor secondary antibodies 
(1:1,000, Life Technologies) for 1 h at room temperature. Nuclei were visualized 
with Hoechst 33258 (ThermoFisher Scientific, H3569). Glass coverslips were 
mounted on microscopy slides using Aquamount (Thermo Scientific). Images were 
taken using a SP8 confocal microscope and processed using ImageJ (Fiji).

Western blotting. hCS protein lysates were prepared using a 
radioimmunoprecipitation assay (RIPA) buffer system (Santa Cruz, sc-24948) and 
protein concentrations were quantified using the bicinchoninic Acid (BCA) assay 
(Pierce, ThermoFisher 23225). Proteins (8 µg per sample per lane) were loaded 
and run on a 4–12% Bis-Tris PAGE gel (NuPAGE 4-12% Bis-Tris Protein Gel, 
Invitrogen) and transferred onto a polyvinylidene fluoride (PVDF) membrane 
(Immobulin-FL, EMD Millipore). Membranes were blocked with 5% milk in PBST 
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for 1 h at room temperature (RT) and incubated with primary antibodies against 
β-actin (mouse, 1:50,000, Sigma, A5316), synapsin-1 (rabbit, 1:1000, Cell Signaling, 
5297S) overnight at 4 °C and antibodies against the NMDA receptor 2A (GRIN2A, 
rabbit, 1:1000, Cell Signaling, 4205S), NMDA receptor 2B (GRIN2B, rabbit, 
1:1000, Cell Signaling, 4207S)) for 72 h at 4 °C. Membranes were washed three 
times with PBST and then incubated with near-infrared fluorophore-conjugated 
species-specific secondary antibodies: Goat Anti-Mouse IgG Polyclonal Antibody 
(IRDye 680RD, 1:10,000, LI-COR Biosciences, 926-68070) or Goat Anti-Rabbit 
IgG Polyclonal Antibody (IRDye 800CW, 1:10,000, LI-COR Biosciences, 926-
32211) for 1 h at RT. Following secondary antibody application, membranes were 
washed three times with PBST, once with PBS, and then imaged using a LI-COR 
Odyssey CLx imaging system (LI-COR). Protein band intensities were quantified 
using Image Studio Lite (LI-COR) with built-in background correction and 
normalization to β-actin controls. One sample showed unexpectedly low levels of 
synapsin-1 and was not included in the analyses (Fig. 4, source data).

Measurements of NMDA currents. hCS were prepared for whole cell recordings 
as previously described5. Briefly, hCS were infected with AAV-hSyn1::GFP 2 weeks 
before recording. Slices (200 μm thick) were prepared using a Leica VT1200 
microtome (Leica) and allowed to recover for 1 h before recordings at 32 °C in 
bicarbonate-buffered artificial cerebrospinal fluid (aCSF) containing 126 mM 
NaCl (Sigma, 59222C), 2.5 mM KCl (Sigma, P3911), 1.25 mM NaH2PO4 (Fisher 
Scientific/Acros Organics, AC424390025), 2 mM MgCl2 (Sigma, M8266), 2 mM 
CaCl2 (Sigma, C4901), 26 mM NaHCO3 (Sigma, S5761) and 10 mM glucose (Fisher 
Scientific/Acros Organics, AC410950010). Whole cell patch clamp recordings were 
performed at room temperature (~ 22–25 °C). Slices were superfused with aCSF 
at a rate of 3 ml min−1. Whole cell patch clamp recordings were collected using a 
MultiClamp 700 A amplifier (Molecular Devices), Axon Digidata 1550B digitizer 
(Molecular Devices) and Clampex 11.0 software (Molecular Devices). Borosilicate 
glass pipettes (3–5 MΩ) were used to obtain intracellular recordings. Fluorescently 
labeled neurons were randomly selected for patching. Pipettes were filled with 
internal solution containing 120 mM potassium gluconate, 11 mM KCl, 1 mM 
MgCl2, 1 mM CaCl2, 10 mM HEPES (Sigma, H4034) and 1 mM EGTA (Sigma, 
E4378), and the pH was adjusted to 7.4. NMDA (Sigma, M3262) was applied to the 
cell using a 2–3 MΩ borosilicate glass pipette positioned 25 μm away from the cell 
body. Pulses (50 ms) of NMDA were produced using a Picospritzer II (General Valve 
Corporation). Cell recording quality was monitored by measuring access resistance 
and cells that deviated by more than 15% during the course of the recording were 
discarded. GRIN2B-containing NMDA receptors were blocked by adding ifenprodil 
tartrate salt (IFN; 10 μM; Sigma, I2892) to aCSF. hCS derived from two cell lines 
(8858-3 and 1205-4) were used for these recordings. One cell was patched per hCS, 
for a total of 25 neurons from 25 hCS (Supplementary Table 1). Association between 
the proportion of change in amplitude after adding IFN was tested using beta 
regression64 with a logit link function using the betareg package (v.3.1-3) in R.

RNA editing identification. RNA-seq reads were mapped to GRCh37 genome 
and transcriptome using HISAT2 (ref. 65; v.2.1.0) with parameters accounting for 
the respective strand specificities of the BrainSpan and cortical spheroid datasets. 
Uniquely mapped reads were retained for further analysis. We then used previously 
developed procedures to identify RNA editing sites26,66,67. In brief, first we used 
unmapped reads to find editing sites in hyperedited regions68. Adenosines in 
unmapped reads were converted into guanosines and aligned with HISAT2 to a 
modified hg19 genome where adenosines were also substituted with guanosines26. 
These hyperedited reads were then combined with the original uniquely mapped 
reads. Next, candidate editing sites were identified as mismatches between reads and 
the reference genome. A log-likelihood test and posterior filters were then applied 
to eliminate editing sites likely caused by sequencing errors and other technical 
artifacts67. To eliminate rare genomic variants from identified RNA editing sites, we 
filtered for sites found across multiple individuals. Specifically, editing sites were 
required to be found with at least five total reads and two reads edited across five 
unique individuals. In our cortical spheroid dataset, we reduced the requirement to 
four unique individuals, due to sample size. A total of 109,487 and 19,046 editing 
sites were identified in the BrainSpan and cortical spheroid datasets, respectively.

Weighted co-editing network analysis for RNA editing sites. Modules of 
RNA editing sites were found using the WGCNA package62. To obtain accurate 
representation of topological overlap, we first filtered for editing sites with at least 
five total reads in at least 80% of samples, zero variance or too much missing 
data using the goodSamplesGenes function in the WGCNA package. To facilitate 
finding modules corresponding to developmental time in the BrainSpan dataset, 
we required nonzero editing in at least 51% of samples from at least one period. 
Given the limited sample size of our cortical spheroid dataset, this filter was 
applied only to the BrainSpan samples.

For the cortical spheroids we adjusted RNA editing levels to avoid individual 
modules driven by single individuals. For each editing site, a linear model was 
constructed between editing level against differential day, individual and batch. 
Editing levels were adjusted by subtracting out the maximum likelihood beta 
estimates for individuals and batch. A soft threshold power of ten was used to fit 
scale-free topology. To preclude modules driven by outlier samples, we followed 

our previous bootstrapping strategy26,69,70, where modules were obtained using 
consensus topological overlap from 100 bootstraps. In brief, for each bootstrap, 
samples up to the original sample size were randomly resampled with replacement. 
Signed topological overlap matrices were obtained from the corresponding matrix 
of editing sites using TOMsimilarity (adjacency(corFnc = “cor”, type = “signed”, 
power = 10, corOptions = list(method = “spearman”, use = “pairwise.complete.obs”), 
TOMType = “signed”). The bootstrapped matrices were then recalibrated from 
20,000 random matrix entries. The consensus topological overlap matrix was taken 
as the median across all recalibrated bootstrapped matrices.

To find associations of modules with various biological processes, we defined 
the eigenvalue as the first PC of each module. The timecourse trajectory of each 
module was determined by plotting each eigenvalue against differentiation day (for 
cortical spheroids) and period (for BrainSpan). Associations between the modules 
and RNA editing enzymes were evaluated by correlating the eigenvalue against 
adjusted gene expression values for established RNA editing enzymes encoded by 
ADAR1, ADAR2 and ADAR3 (ref. 71), and against FMR1 and FXR1, that encode 
proteins that were recently shown to also exhibit RNA editing regulation26. 
Modules found in BrainSpan samples and cortical spheroids were tested for 
significant overlap of member editing sites using Fisher’s exact test. Only editing 
sites found in both BrainSpan and cortical spheroids were considered for this test.

eCLIP analysis of RNA editing sites. To investigate whether RNA editing in 
modules are targetable by FMRP and FXR1P proteins, we obtained eCLIP datasets 
of FMRP and FXR1P binding sites in postmortem human frontal cortex26. 
Comparison of distances between eCLIP peaks and module editing sites was also 
performed using published methods26. Briefly, for member editing sites within each 
BrainSpan or hCS module, the closest distances from eCLIP peaks compared to the 
null background consisting of distances between peaks and gene-matched random 
adenosines were compared over 10,000 sets of controls. P values were obtained 
by calculating the area under the curve (AUC) of the cumulative distribution of 
distances of editing sites to CLIP peaks in the interval 0–100 kb. AUC values of 
the 10,000 sets of controls were modeled by a Gaussian distribution, which was 
then used to calculate a one-sided P value for the AUC of the module editing sites. 
To test overlap of FMRP- and FXR1- targeted editing sites between hCS and BS 
modules, an editing was labeled “targetable” if within 1,000 bp of the nearest FMRP 
or FXR1P CLIP peak. Editing sites residing in genes expressed with RPKM < 5 
in adult frontal cortex were not coverable by CLIP analysis and excluded from 
analysis. The significance of overlap of targetable editing sites between hCS and BS 
modules was evaluated using Fisher’s exact test. Only editing sites found in both 
BrainSpan and hCS were considered for this test.

Mapping of disease genes. Genes associated with ASD (https://gene.sfari.org/
database/gene-scoring/), ID72, epilepsy21, SCZ73, AD74,75, PD76,77, PSP78 and FTD79 
were analyzed. For the ASD genes, only high confidence genes (gene score < 2 or 
syndromic genes) were analyzed. For AD and PD, we combined common variants 
from the genome-wide association studies (GWAS) with genes associated with 
rare, familial forms of these diseases. For AD, these genes are APOE, APP, PSEN1 
and PSEN2 (ref. 75). For PD these genes are PINK1, SNCA, LRRK2, PRKN, UCHL1 
and PARK7 (ref. 77). As there are only a small number of genes associated with 
the neurodegenerative diseases PSP (9 genes) and FTD (13 genes), and they are 
considered part of a frontal lobar degeneration spectrum, these were combined. 
Genes were clustered by their expression in the hCS using hierarchal clustering 
on the Euclidean distance between the genes. Cluster eigengenes were calculated 
using the module Eigengenes function from the WGCNA package. The gene in 
each cluster were correlated to the cluster module eigengene and the top five genes 
were annotated on the heatmap. GO terms enrichment was performed using the 
enrichGO function from the clusterProfiler package80 (v.3.12.0). Enrichment 
was performed on biological process and molecular function GO terms. All 
genes expressed in the hCS were used as background. Cell type enrichment was 
performed using the bootstrap.enrichment.test from the EWCE package81 (v.0.99.2) 
on hCS single-cell data11 with 100,000 permutations. All genes expressed in both 
the current dataset and the single-cell dataset were used as background. This 
method tests whether a list of genes has a higher level of expression in a specific 
cell type that would be expected by chance.

Statistics. Statistical analyses, including Fisher’s exact test, beta regression and 
Spearman correlation rank–rank hypergeometric tests, were performed as detailed 
in legends and Methods. As these tests do not depend on the distribution being 
normal, no test for normality was performed. No statistical methods were used 
to predetermine sample sizes, but our sample sizes per timepoint are similar to 
those reported in previous publications5,6,10. Due to the nature of these long-term 
cultures, collection of samples was not performed blind to the differentiation stage.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Gene expression data and methylation data are available in the Gene Expression 
Omnibus (GEO) under accession numbers GSE150122 and GSE150123. The 
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accompanying GECO webtool can be accessed at https://labs.dgsom.ucla.edu/
geschwind/files/view/html/GECO.html. The BrainSpan data are available in 
the database of Genotypes and Phenotypes (dbGaP) under Study Accession 
phs000755.v2.p1. Single-cell data from human fetal cerebral cortex can be found at 
http://geschwindlab.dgsom.ucla.edu/pages/codexviewer and at dbGaP under Study 
accession phs001836. eCLIP data for FXR1 and FMR1are available in GEO with 
accession number GSE107895. Human cortical organoid single-cell sequencing 
data are available in GEO with accession number GSE107771. Source data are 
provided with this paper.

Code availability
The code used in this manuscript can be found at https://github.com/dhglab/
human_cortical_organoid_maturation.
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Extended Data Fig. 1 | Data description and quality. a, Timepoints and hiPSC line information for the 62 samples used for RNA sequencing (left). Samples 
were differentiated from 5 cell lines derived from 4 individuals. Timepoints and hiPSC information for the 50 samples used for DNA methylation (right). 
Samples were differentiated from 6 cell lines derived from 5 individuals (see Supplementary Tables 1 and 2). Two samples (blue) were hybridized in 
replicate for quality control purposes and their values were averaged. Each point represents one sample from a specific cell line (y-axis) and differentiation 
day (x-axis). Full circles represent sample coming from males and rings represent samples coming from females. Gray and white background shading show 
aggregation of differentiation days into stages. b, Principal component analysis (PCA) of the expression data. The values represent the adjusted r squared 
of the PC with the covariates indicated. The numbers in brackets on axis titles are the percent of variance explained by the PC. The first 5 PCs, which 
explain 57.1% of the total variance, show high association with differentiation day. c, Dendrogram of hierarchical clustering of samples demonstrating 
that differentiation day but no other covariates (individual, Sex, batch) is driving the clustering of samples. d, Violin plots of the variance explained by 
each of the covariates for each gene. Outlines represent the density of the percent of variance explained. The numbers are the median value of percent 
of explained variance for each variable. Boxplots in d show: center – median, lower hinge – 25% quantile, upper hinge – 75% quantile, lower whisker – 
smallest observation greater than or equal to lower hinge –1.5× interquartile range, upper whisker – largest observation less than or equal to upper hinge 
+1.5× interquartile range. n = 62 samples from 5 hiPSC lines derived from 4 individuals.
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Extended Data Fig. 2 | Cell stress in hCS. a, Trajectories of metabolic cell stress genes20 hCS (top) and in vivo (bottom). b, In vitro (left) and in vivo 
(right) module eigen genes of glycolysis (organoid.Sloan.human.ME.paleturquoise) and ER stress (organoid.human.ME.darkred) previously suggested to be 
upregulated in vitro20. Gray areas denote time of shift from prenatal to postnatal gene expression. In (a) and (b) shaded gray area around the trajectory 
represents the 95% confidence interval, vertical gray lines represent birth and vertical gray bars denote the shift from prenatal to postnatal gene 
expression based on matching to in vivo patterns. For in vitro data n = 62 samples from 5 hiPSC lines derived from 4 individuals and for in vivo data n = 196 
from 24 individuals. c, Scatterplot visualization of cells in in developing fetal cortex colored by major cell types22. vRG, ventral radial glia; oRG, outer radial 
glia; CGE, caudal ganglionic eminence; MGE, medial ganglionic eminence; OPC, oligodendrocyte precursor cell; IP, intermediate progenitors.
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Extended Data Fig. 3 | Changes in biological processes between early and later stages of differentiation. a, Number of differentially expressed 
genes when comparing differentiation day 200 to differentiation day 25 (left) and differentiation day 400 to differentiation day 200 (right). Magenta 
bar represents upregulated genes and the green bar represents down-regulated genes. b, Top 3 up- and downregulated GO terms enriched in genes 
ranked by logFC using gene set enrichment analysis, (GSEA; FDR < 0.05). c, Normalized expression of marker genes in vivo for neurons, intermediate 
progenitors, astrocytes, and radial glia as well as superficial and deep layer cortical neurons. d, Scaled expression of fetal and mature astroglial genes7 
during differentiation. A shift between fetal and mature gene sets occurs at ~250 days of hCS differentiation. e, Normalized expression of marker genes for 
inhibitory neurons and oligodendrocyte precursor cells (OPCs) that are not preserved in hCS. f, Normalized expression of activity-dependent genes that 
are not preserved in hCS. In (c), (e) and (f) shaded gray area around the trajectory represents the 95% confidence interval, vertical gray lines represent 
birth and vertical gray bars denote the shift from prenatal to postnatal gene expression based on matching to in vivo patterns. For in vitro data n = 62 
samples from 5 hiPSC lines derived from 4 individuals and for in vivo data n = 196 from 24 individuals.
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Extended Data Fig. 4 | Overlap between hCS and in vivo WGCNA modules. Overlap of genes in hCS and the BrainSpan in vivo modules. Significant ORs 
are presented. Modules were clustered using complete-linkage hierarchal clustering. Color represents the OR of each overlap. In vivo neuronal modules 
(green) and glial modules (purple) are marked.
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Extended Data Fig. 5 | Overlap between hCS and in vivo editing modules. a, Overlap of editing sites in hCS and BrainSpan in vivo modules. Significant 
ORs are presented. b, Distributions showing the closest distances between editing sites from BrainSpan editing modules and FMRP or FXR1P eCLIP peaks 
(blue). The median of 10,000 sets of control sites (black) is depicted for comparison. See Methods for details of P-value calculation. N, number of editing 
sites shown. c, Overlap of editing sites within 1000bp of a CLIP site in hCS and BrainSpan in vivo modules. Significant ORs are presented. *** FDR < 0.005.
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Extended Data Fig. 6 | Expression of select genes in the in vivo fetal cerebral cortex. a, Immunohistochemistry of HDAC2 and the deep layer marker 
CTIP2 (BCL11B) at post conception week 21 (PCW21). CP, cortical plate. Scale bars, 100 μm. The Immunohistochemistry experiment was performed once. 
b, Scatterplot visualization of cells in developing fetal human cerebral cortex colored by major cell types 22. vRG, ventral radial glia; oRG, outer radial glia; 
CGE, caudal ganglionic eminence; MGE, medial ganglionic eminence; OPC, oligodendrocyte precursor cell, IP, Intermediate progenitors.
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Extended Data Fig. 7 | Mapping neurodegenerative and epilepsy disorder genes onto hCS differentiation. Mapping of genes associated with progressive 
supranuclear palsy (PSP) and frontotemporal dementia (FTD) (a), and epilepsy (b) onto hCS differentiation trajectories. The first column shows clustering 
of scaled normalized expression of genes associated with a disorder. Genes (in rows) are clustered using hierarchical clustering on the Euclidean distance 
between genes. Samples (columns) are ordered by differentiation day (represented by gray bars) with the earliest days on the left and latest timepoints on 
the right. The 5 most representative genes (highest correlation with the cluster eigengene) are shown. The second column shows the cluster eigengenes 
(first principal component) for the identified gene clusters. Shaded gray area around the trajectory line represents the 95% confidence interval. The third 
column shows the top GO terms enriched in the identified clusters. The fourth column shows cell types over expressed in either all the genes associated 
with a disorder (above line) or in the genes from the identified clusters. Number and color represent the fold change. Significance was tested using a 
one-sided permutation test with 100,000 permutations. P values were corrected for multiple testing using the Benjamini-Hochberg method. * FDR < 0.05, 
** FDR < 0.01, *** FDR < 0.005. n = 62 samples from 5 hiPSC lines derived from 4 individuals. IP, intermediate progenitors; GlutN, glutamatergic neurons; 
IN, interneurons; OPC, oligodendrocyte progenitor cells.
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Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

Gene expression data has been deposited in the Gene Expression Omnibus (GEO) under accession numbers GSE150122 and GSE150123. The data in this study are 

available on request from the corresponding author.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Six hiPSC lines were used in this paper (Supplementary Table 1 and 2).   

A total of 62 samples for RNA sequencing (from 4 individuals, 5 hiPSC lines)  and a total of 50 samples for DNA methylation (from 5 individuals, 

6 hiPSC lines) at 13 time periods were collected.    

For WB, 3 hiPSC were used, for electrophysiological experiments 2 hiPSC lines were used and for immunocytochemistry 4 hiPSC lines were 

used.  

No statistical methods were used to pre-determine sample sizes, but our sample sizes per time point are similar to those reported in previous 

publications (Pasca et al., Nature Methods, 2015; Sloan et al., Neuron 2017; Trevino et al., Science, 2020)

Data exclusions The predetermined exclusion criteria were: 

For  RNA-seq, samples were excluded if  3 standard deviations away from the mean standardized sample network connectivity.   

For electrophysiology experiments, cells which deviated by more than 15%  in their access resistance during the course of the recording were 

not used in the analysis.  

Replication hiPSC lines were differentiated from 6 hiPSC lines derived from 5 individuals to assess reliability of the methods and maintained long term 

(previously described in Yoon et al., Nature Methods, 2019). 

Randomization hCS of similar diameter were randomly selected for experiments.  

Neurons for patching were randomly selected using  a fluorescent reporter.

Blinding This study did not include case-control comparison.  

For western blotting the investigators were not blinded to the differentiation status of the hCS samples.  

Patch clamping was performed blindly to the stage of differentiation of hCS. 
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Antibodies used anti-BRN2 (Mouse, 1:500, Millipore, MABD51, clone 8C4.2, Lot#2375594)   

anti-CTIP2 (Rat, 1:300, Abcam, ab18465, Lot#GR322373-7)  

anti-FXR1 (B-2, Mouse, 1:50; Santa Cruz, sc-374148, Lot#B2018) 

anti-GFAP (Rabbit, 1:1,000, Dako, Z0334, Lot#20073982) 

anti-GFAP (Rat, 1:1,000, Thermo Fisher Scientific, Clone 2.2B10, 13-0300) 

anti-HDAC2 (C-8, Mouse, 1:50, Santa Cruz, sc-9959, Lot#G1320),   

anti-MAP2 (Guinea pig, 1:5,000, Synaptic Systems, 188004, Lot#2-26)   

anti-SOX9 (Goat, 1:500, R&D Systems, AF3075)  

anti-NR2A(GRIN2A) (Rabbit, 1:1000, Cell Signaling #4205) 

anti-NR2B(GRIN2b) (Rabbit, 1:1000, Cell Signaling #4207) 

anti-β-actin (Mouse, 1:50,000, Sigma, A5316) 

anti-Synapsin1 (Rabbit, 1:1000, Cell Signaling, 5297S) 

anti-Mouse IgG Polyclonal Antibody Goat, IRDye 680RD, 926-68070) 

anti-Rabbit IgG Polyclonal Antibody (Goat, IRDye 800CW, 926-32211)

Validation All antibodies were commercially available.   

We have previously used and/or validated some of these antibodies (Pasca et al., Nature Methods 2015; Sloan et al., Neuron 2017; 

Trevino et al., Science 2020).  

The anti-BRN2 antibody was validated in human neural cells (Trevino et al., Science 2020).  

The anti-CTIP2 has been referenced in 401 publications according to the manufacturer’s website, and validated in human neural cells  

(Pasca et al., Nature Methods 2015; Trevino et al., Science 2020).  

The anti-FXR1 antibody has been referenced in 2 publications according to the manufacturer’s website.  

The anti-GFAP (Rabbit) has been used in 8 studies according to the manufacturer’s website, and has been validated in human neural 

cells (Pasca et al., Nature Methods 2015; Sloan et al., Neuron 2017; Trevino et al., Science 2020).  

The anti-GFAP (Rat) has been used in 130 publications according to the manufacturer’s website and has been validated in human 

neural cells (Trevino et al., Science 2020).  

The anti-HDAC2 has been used in 64 publications according to the manufacturer’s website.  

The anti-MAP2 has also been used in 71 studies for ICC and 13 studies for IHC according to the manufacturer’s website, and has been 

validated in human neural cells (Pasca et al., Nature Methods 2015; Trevino et al., Science 2020).  

The anti-SOX9 has been used in 36 studies according to the manufacturer’s website, and has been validated in human neural cells 

(Trevino et al., Science 2020).  

The rabbit anti-NMDAR-2A (Cell Signaling, #4205) was used in 38 publications according manufacturer's website.  

The mouse anti-NMDAR-2B (Cell Signaling, #4207) was used in 31 publication according manufacturer's website.   

The mouse anti-β-actin (Sigma, A5316) has been used in 1,670 publications according manufacturer's website, and tested for 

western blot analysis in human cells (Gabriel-Salazar et al., 2018). 

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) Five hiPSC lines from were derived at Stanford University with IRB approval and following written consent; one line (H20961) 

was obtained from the Gilad lab at University of Chicago under an MTA.   

Inactivated mouse fibroblasts EmbryoMax PMEF were purchased from EMD Millipore. 

Authentication All hiPSC lines were assessed for pluripotency, like previously described in Pasca et al, Nature Medicine 2011 or Yazawa et al., 

Nature 2011.   

hiPSC lines were assessed for genomic integrity by  SNP microarray "GSAMD–24v2–0" (with 759,993 probes).

Mycoplasma contamination All cell lines and P-MEF cells were tested for Mycoplasma contamination and tested negative

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used
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