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Oligodendrocytes have key roles in brain development, 
including myelinating and electrically insulating neuronal 
axons for impulse propagation, as well as providing trophic 

and metabolic support for neurons1–4. These functions are coordi-
nated by communication between oligodendrocytes and neighbor-
ing astrocytes and neurons5–7, which occurs both through physical 
interactions and through secreted factors5,8–11. During neural devel-
opment, oligodendrocyte lineage cells progress from mobile, bipo-
lar oligodendrocyte progenitor cells (OPCs) to stationary, highly 
branched mature oligodendrocytes. The loss of oligodendrocytes or 
alterations in their ability to migrate, myelinate, or communicate 
with other cell types can lead to diseases such as multiple sclerosis 
and vanishing white matter disease12,13.

Although methods have been developed to generate oligoden-
drocytes from human pluripotent stem cells14–18, these models 
cannot be maintained long term in vitro and lack the diversity 
of mature cell types and the cytoarchitecture that oligodendro-
cytes encounter in vivo. These features of two-dimensional cul-
ture make the study of cellular interactions difficult as they occur 
in a three-dimensional (3D) environment in vivo. The advent of 
organoid methodologies has allowed the generation of self-orga-
nized cellular models with complex cytoarchitecture in vitro, and 
these cultures can be maintained over extended periods of time19. 
Here, we developed an approach to differentiate human induced 
pluripotent stem (hiPS) cells into 3D neural spheroids to model 
the development of human oligodendrocyte lineage cells alongside 
neurons and astrocytes. Our method produced human neurons, 
astrocytes, and oligodendrocytes that co-developed both spatially 
and temporally. The oligodendrocytes transitioned through devel-
opmental stages and were transcriptionally similar to primary 
oligodendrocytes. Oligodendrocyte lineage cells matured mor-
phologically and electrophysiologically over time and ultimately 
myelinated nearby axons.

Results
Generation and characterization of human oligodendrocyte 
spheroids (hOLS). To generate hOLS that contain oligodendrocytes, 
astrocytes, and neurons, we leveraged approaches to derive region-
specific 3D cultures that we previously developed20,21. We enzy-
matically dissociated hiPS cells into a single cell suspension (n =​ 7 
hiPS cell lines derived from 7 control subjects; see Supplementary  
Table 1) and aggregated them into spheroids using microwells  
(Fig. 1a). After dislodging the spheroids from the microwells 
18–24 h later, we exposed them to dual SMAD inhibitors dorsomor-
phin and SB-431542 followed by epidermal growth factor (EGF) 
and fibroblast growth factor 2. Smoothened agonist and IWP-2 were 
added to activate the SHH pathway (days 12–24) and inhibit the 
WNT pathway (days 4–24), respectively. From day 25 to day 36, we 
added platelet-derived growth factor (PDGF), hepatocyte growth 
factor, insulin-like growth factor 1, neurotrophin 3 (NT-3), brain-
derived neurotrophic factor (BDNF), insulin, triiodo-L-thyronine 
(T3), biotin, and a cyclic AMP analog (cAMP) to promote OPC sur-
vival and proliferation14. At day 37, insulin, biotin, T3, cAMP, and 
L-ascorbic acid were added to the media for the duration of culture 
to promote oligodendrocyte maturation. At day 25 of in vitro cul-
ture, hOLS showed high expression of the ectoderm marker SOX2, 
but not the mesoderm or endoderm markers BRACH and SOX17 
(Supplementary Fig. 1a; n =​ 4 samples from hOLS derived from 4 
hiPS cell lines). At day 37, hOLS expressed the forebrain markers 
FOXG1, SIX3, NKX2-1, OTX2, PAX6, and LHX2 at levels compa-
rable to or higher than our previously described method to generate 
human cortical spheroids (hCS)20,22, but not midbrain- (LMX1B), 
hypothalamus- (RAX), or spinal cord- (HOXB4) related genes 
(Supplementary Fig. 1b; n =​ 5 samples from hOLS derived from  
5 hiPS cell lines).

At day 100 of in vitro differentiation, we found a significant 
increase in gene expression of OLIG2, NKX2-2, and MBP in hOLS as 
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Fig. 1 | Characterization of hOLS derived from hiPS cell lines. a, Schematic for generating hOLS. hiPS cells are enzymatically dissociated and aggregated  
in microwells to form spheroids. DM, dorsomorphin; SB, SB-431542; SAG, smoothened agonist; HGF, hepatocyte growth factor; AA, ascorbic acid.  
b–d, Relative gene expression (normalized to GAPDH) as determined by qPCR at day 100 of in vitro culture in hCS and hOLS of OLIG2 (b) (two-tailed 
Mann–Whitney test, ****P <​0.0001), NKX2-2 (c) (two-tailed Mann–Whitney test, ****P <​0.0001), and MBP (d) (two-tailed t test, t =​ 2.97, d.f. =​ 15, 
***P =​ 0.009). In b–d, for hCS n =​ 8 and for hOLS n =​ 9 RNA samples from spheroids derived from 4 hiPS cell lines in 1–4 differentiation experiments; 
see Supplementary Table 1. Lines are shown in different colors; each point represents 2–4 hOLS pooled from 1 differentiation experiment. e–h, Day 
54 immunostaining and quantification of OLIG2 and NKX2-2 double-positive cells (e,f) (two-tailed t test, t =​ 0.55, d.f. =​ 7, P =​ 0.59) and of PDGFRα​ 
(g,h) (two-tailed t test, t =​ 1.68, d.f. =​ 7, P =​ 0.13) out of Hoechst in dissociated hOLS at day 54 and day 110 (n =​ 5 samples each consisting of 4–6 hOLS 
derived from 3 hiPS cell lines; hiPS cell lines shown in different colors; see Supplementary Table 1). i–l, Immunostaining of O4 (i), O1 (j), MBP (k), and 
MBP and O4 (l) in cryosections. Immunostainings were repeated on hOLS from six independent inductions for O4, three independent inductions for 
O1, five independent inductions for MBP, and three independent inductions for MBP and O4 together with similar results. m,n, Immunostaining (m) and 
quantification (n) of MBP+ cells over time in whole hOLS cryosections (days 50–60: n =​ 12 hOLS from 5 hiPS cell lines; days 100–110: n =​ 17 hOLS from 5 
hiPS cell lines; days 150–160: n =​ 9 hOLS from 4 hiPS cell lines; each point represents one hOLS; see Supplementary Table 1; Kruskal–Wallis test,  
P <​0.0001 with Dunn’s multiple comparison test days 50–60 versus days 100–110, ***P =​ 0.0005, and days 50–60 versus days 100–110, ****P <​ 0.0001).  
o, Immunostaining of MBP, GFAP, and NF-H in hOLS cryosections. Immunostainings were repeated on hOLS from three independent inductions with 
similar results. Data are mean ±​ s.e.m. Scale bars, 10 μ​m (k,o), 20 μ​m (i,j,l), 50 μ​m (e,g), and 100 μ​m (m).
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determined by quantitative PCR (qPCR) compared with hCS20, sug-
gesting an enrichment of oligodendrocyte lineage cells (n =​ 9 sam-
ples from hOLS and n =​ 8 samples from hCS derived from 4 hiPS 
cell lines; P <​0.001; Fig. 1b–d). We next performed immunofluo-
rescent labeling on cryosections (Supplementary Fig. 1c) obtained 
at day 51 and dissociated cultures obtained from day 54 and day 
110 hOLS to test for the presence of NKX2-2+/OLIG2+ double-pos-
itive OPCs and PDGFRα​+ OPCs (Fig. 1e–h). Approximately 12% 
of cells at day 54 and 9% of cells at day 110 were NKX2-2+/OLIG2+ 
double-positive (Fig. 1f; n =​ 4–5 samples from hOLS derived from 
3 hiPS cell lines) and approximately 51% of cells at day 54 and 
35% of cells at day 110 were PDGFRα​+ (Fig. 1h; n =​ 4–5 samples 
from hOLS derived from 3 hiPS cell lines). To determine whether 
OPCs were maturing into oligodendrocytes over time, we immu-
nostained cryosections obtained from hOLS at days 100–160 of in 
vitro differentiation. We observed O4+, O1+, and MBP+ cells, indi-
cating a range of oligodendrocyte stages from pre-oligodendrocytes  
to mature, late-stage oligodendrocytes (Fig. 1i–k). Notably, we 
found both O4+ cells that were bipolar and did not express MBP, 
as well as O4+ cells that were highly branched and overlapped with 
MBP (Fig. 1l). To determine whether the abundance of mature  

oligodendrocytes increased in hOLS over time, we quantified the 
density of MBP+ cells in whole cryosections between days 50 and 
160 of differentiation. We observed an increase in the density of 
MBP+ cells and that most MBP+ cells were located in the outer third 
of each section (Fig. 1m,n and Supplementary Fig. 1d; n =​ 9–17 
hOLS from 6 hiPS cell lines; P <​ 0.0001).

A goal of this method was to produce oligodendrocytes in close 
proximity to neurons and astrocytes, so we performed immu-
nostainings in day 100 hOLS cryosections for MBP, GFAP, and 
Neurofilament-H (200 kD) (NF-H). We observed both neurons and 
glial lineage cells in close proximity to each other (Fig. 1o). Moreover, 
the relative gene expression of the neural marker RBFOX3 as deter-
mined by qPCR at day 100 was comparable between hCS and 
hOLS (Supplementary Fig. 1e; P >​ 0.05), whereas the glial marker 
GFAP was expressed at a higher level in hOLS (Supplementary  
Fig. 1e; P <​ 0.01). Quantifications in dissociated cultures revealed 
that approximately 45% of cells at day 54 and 20% of cells at day 
110 were MAP2+, and 8% of cells at day 54 and 21% of cells at day 
110 were GFAP+ (Supplementary Fig. 1f–i; n =​ 4–5 samples from 
hOLS from 3 hiPS cell lines). To verify neurotransmitter identity in 
these cultures, we next used qPCR and found that hOLS expressed 
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Fig. 2 | Transcriptional comparison of hOLS oligodendrocyte lineage cells to primary tissue cells. a, Schematic showing the isolation of O4+ cells from 
hOLS. scRNA-seq, single-cell RNA-sequencing. b, t-SNE clustering data from hOLS (n =​ 295 cells), primary human brain tissue, and hCS (n =​ 1,473  
cells total; colored by cell type). c, Gene expression of oligodendrocyte lineage-related SOX10 in single cells. d, O4+ hOLS-derived single cells.  
e, Oligodendrocyte cluster from t-SNE map in b with three distinct k-means subclusters of hOLS. f, Mean expression of oligodendrocyte-lineage-specific 
genes in hOLS as well as primary OPCs and mature oligodendrocytes isolated from adult human brain tissue (log2 data normalized across rows). g, Single-
cell gene expression of subcluster-specific markers in the oligodendrocyte lineage cluster. h, O4+ single cells derived from hOLS indicated by hiPS cell line.
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more of the GABAergic-related GAD1 gene (P <​ 0.01) and less of 
the glutamatergic-transporter-encoding SLC17A7 gene (P <​ 0.001) 
(also known as VGLUT1) than hCS (Supplementary Fig. 1j,k).

Single-cell RNA-sequencing (RNA-seq) of hOLS-derived oligo-
dendrocytes. To comprehensively characterize oligodendrocyte 
lineage cells in hOLS, we isolated O4+ cells from day 127 hOLS by 
immunopanning and performed deep single-cell RNA-sequencing 
(Fig. 2a). We sequenced 295 cells derived from two hiPS cell lines and 
compared their profiles to cells isolated from primary human fetal 
cortex, primary human adult cortex, and hCS23,24 (Supplementary 
Fig. 2a). Clustering of all cells using the t-distributed stochastic neigh-
bor embedding (t-SNE)25 approach revealed distinct populations  

of SOX10+ oligodendrocytes, STMN2+ neurons, SOX9+ astrocytes, 
CX3CR1+ microglia, and FLT1+ endothelial cells (Fig. 2b,c and 
Supplementary Fig. 2b). The O4+ cells derived from hOLS clus-
tered most closely to OPCs and mature oligodendrocytes from 
the primary human adult cortical tissue within the SOX10+ cluster  
(Fig. 2d,e). On closer inspection, the oligodendrocyte cluster con-
tained populations of proliferating cells, OPCs and newly formed 
oligodendrocytes (NFOs), and myelinating oligodendrocytes 
derived from hOLS that had similar patterns of marker expression 
as primary OPCs and primary mature oligodendrocytes (Fig. 2f,g 
and Supplementary Fig. 2c; also see Supplementary Fig. 3a for exam-
ples of genes differentially expressed between primary and hOLS 
samples). Expression of oligodendrocyte-stage-specific markers 
was confirmed in cells from each cluster by qPCR (Supplementary  
Fig. 2d). Moreover, we found O4+ cells in the three oligodendrocyte 
subclusters in hOLS from two hiPS cell lines and a high transcrip-
tomic consistency across lines (Pearson’s r =​ 0.96, log normalized 
gene expression) (Fig. 2h and Supplementary Fig. 2e,f).

To further assess the developmental progression of oligodendro-
cyte lineage cells in hOLS, we performed Monocle analysis, which 
utilizes an unsupervised algorithm to reveal single-cell gene expres-
sion kinetics over time and orders cells through a biological process26. 
This analysis revealed a spectrum of oligodendrocyte lineage stages 
in hOLS ranging from dividing cells expressing MKI67 and TOP2A, 
which closely resemble primary OPCs, to mature cells expressing 
MOG and MBP, which closely resemble primary mature oligoden-
drocytes (Fig. 3a). This analysis further identified several temporal 
patterns of gene expression, including some genes that were highly 
expressed early and decreased over pseudotime, some that peaked 
mid-pseudotime, and others that were more highly expressed at 
later pseudotime points (Fig. 3b). Early pseudotime genes expressed 
in dividing oligodendrocytes included PTPRZ1, PDGFRA, and 
CSGP4; mid-pseudotime genes expressed in immature oligoden-
drocytes included SIRT2, RASGEF1B, and TMEM108; late pseudo-
time genes expressed in mature oligodendrocytes included MOG, 
GSN, and MOBP27 (Fig. 3c and Supplementary Fig. 3b).

Anticipating that hOLS may be useful for disease modeling, 
we analyzed the single-cell expression pattern of genes associ-
ated with oligodendrocyte-related disorders (Fig. 2e and 3d and 
Supplementary Fig. 3c). We found that a gene associated with 
Aicardi–Goutieres syndrome (RNASEH2A)28 was expressed pri-
marily in OPCs and NFOs, and that genes associated with meta-
chromatic leukodystrophy (ARSA)29 and Krabbe disease (GALC)30 
were expressed in mature oligodendrocytes. These findings suggest 
that having access to multiple stages of oligodendrocyte develop-
ment may be important for disease modeling.

Maturation of oligodendrocytes in hOLS. Prompted by the find-
ing that oligodendrocyte lineage cells mature transcriptionally in 
hOLS, we next examined their morphology and functional prop-
erties. During development, bipolar OPCs migrate from their 
region of origin throughout the cortex where they ultimately cease 
migrating and extend multiple processes that interact with nearby 
neurons31. To determine whether OPCs migrate in hOLS as they 
do in vivo, we used temperature-controlled live imaging with a 
previously described Sox10-MCS5::eGFP reporter32 at in vitro dif-
ferentiation stages ranging from day 65 up to day 275 in culture 
(Fig. 4a). We found that the propensity of Sox10-MCS5::eGFP+ 
cells to migrate peaked between days 110 and 180 of in vitro cul-
ture, but all Sox10-MCS5::eGFP+ cells were stationary by day 235  
(Fig. 4b; n =​ 5–8 hOLS from 5 hiPS cell lines; P <​ 0.01).

We next sought to determine whether hOLS-derived oligoden-
drocyte lineage cells mature electrophysiologically. As OPCs mature 
to multipolar oligodendrocytes, expression of voltage-gated sodium 
and potassium channels is progressively reduced33,34. We performed 
whole cell current clamp recordings from bipolar and multipolar 
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Sox10-MCS5::eGFP+ cells in slices of hOLS from days 108 to 175 
(Fig. 4c). We observed that the membrane response to current injec-
tion of bipolar cells, but not multipolar cells, was highly nonlinear, 
indicating expression of voltage-dependent sodium and potassium 
channels in the former. In fact, the I-V curve of bipolar-shaped cells 
showed outwardly rectifying currents suggestive of slowly inactivat-
ing potassium currents (Fig. 4d,e; n =​ 10–13 cells, P <​0.001), and 
this difference was accompanied by complementary differences 
in input resistance and capacitance (Supplementary Fig. 4a, b).  
Moreover, during oligodendrocyte development, the release of 
glutamate by nearby neurons plays an instructive role in OPC dif-
ferentiation35,36. We tested for sensitivity to released glutamate in 
voltage-clamped Sox10-MCS5::eGFP+ cells and observed discrete 
inward-going events in approximately 70% of bipolar and multi-
polar cells (n =​ 13 and 10 cells, respectively; Fig. 4f). These events 
were blocked by application of 40 μ​M APV and 20 μ​M NBQX (n =​ 5 
cells; Fig. 4f and Supplementary Fig. 4c), indicating that Sox10-
MCS5::eGFP+ cells express ionotropic glutamate receptors that are 
spontaneously activated in hOLS.

A hallmark of oligodendrocyte maturation is the ability to inter-
act with and myelinate neuronal axons. We immunostained hOLS 
cryosections at day 115 for MBP and NF-H and observed the inter-
action of oligodendrocyte processes and nearby axons (Fig. 5a). 
Moreover, in hOLS cryosections obtained at day 150–158, we iden-
tified examples of MBP flanking neurofilament staining, indicative 
of myelination (Fig. 5b,c and Supplementary Fig. 4d). We found 
that, at days 150–160, ~28% of MBP+ cells interacted with NF-H+ 
processes (Fig. 5d; n =​ 9 hOLS from 3 hiPS cell lines). To verify 

myelination, we performed transmission electron microscopy at 
days 100–170 in hOLS derived from three hiPS cell lines and found 
various stages of myelination, including lamellae of compact myelin 
surrounding axons (Fig. 5e,f and Supplementary Fig. 4e,f). Lastly, as 
a proof of principle that hOLS can be used to study oligodendrocyte 
loss or injury, we treated day 75–85 hOLS with the toxic phospho-
lipid lysolecithin for 15–17 h (Fig. 5g), which has been shown to 
cause demyelination in vivo and in explant cultures37–39. Monitoring 
by live imaging at 4–6 h after treatment revealed changes in the 
morphology and loss of Sox10-MCS5::eGFP+ cells (Fig. 5g,h).

Discussion
We demonstrate the generation of human oligodendrocyte lineage 
cells in a 3D cellular platform that includes multiple stages of oli-
godendrocyte development, migration, and myelination. Our sys-
tem produces neurons and astrocytes that spatially and temporally 
overlap with oligodendrocytes, allowing interaction between cell 
types. This model has several advantages over existing methods to 
produce oligodendrocytes in vitro, including the existence of mul-
tiple mature cell types (Supplementary Table 2). In addition, the 3D 
nature of this platform more closely resembles the cytoarchitec-
ture and cellular milieu that oligodendrocytes would encounter in 
vivo. There is increasing evidence of the importance of interactions 
between oligodendrocytes and astrocytes and between oligoden-
drocytes and neurons during development both through secreted 
factors and physical interactions5,8–11, and the recapitulation of these 
interactions may be essential to building more realistic in vitro 
models of brain function and dysfunction.
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APV (40 μ​M) and NBQX (20 μ​M). Recordings were repeated in five cells from two independent inductions with similar results.
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To validate the stages of oligodendrocyte development in hOLS, 
we performed deep single-cell RNA-seq and identified a progression 
of oligodendrocyte lineage cells from dividing progenitors to mature 
oligodendrocytes. We additionally compared these transcriptional 
data to the signature of primary human oligodendrocytes isolated 
from human cerebral cortex and found that they clustered closely. 
Future studies are necessary to confirm transcriptional similarity in 
additional hiPS cell lines and with larger cell numbers.

The transcriptional maturation of oligodendrocyte lineage cells 
in hOLS was accompanied by functional changes as assessed by 

electrophysiology and electron microscopy. The maturation and 
similarity of oligodendrocytes in hOLS to primary adult samples 
suggest that this model can be applied to answer basic questions 
regarding human oligodendrocyte development, as demonstrated 
by the expression of white-matter-disease-related genes in single 
cells derived from hOLS. To study later stages of oligodendrocyte 
maturation and myelination, future methods need to be developed 
to better quantify the extent of compact myelination in 3D culture. 
Quantifying wrapping by traditional electron microscopy techniques 
is difficult as a result of inconsistency in the directionality of axons in 
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hOLS. However, these current limitations may be resolved by incor-
porating scaffolds to guide projecting axons in hOLS or by perform-
ing high-throughput electron microscopy to image larger areas of 
hOLS and obtain more accurate quantifications of myelination.

A remaining obstacle in the use of 3D cultures to study disease 
processes is the inherent inter- and intra-organoid variability that 
complicates the comparison between control and disease-related 
cultures40. Strategies to limit the variability between organoids 
include directing differentiation to specific brain regions, limit-
ing the use of embedding in extracellular matrices that can induce 
spurious fates, using cell-specific reporters for imaging cell types 
of interest, and using single cell sequencing19,41. In hOLS, the vari-
ability in OPC yield is higher at earlier stages and decreases over 
time. Notably, we also found that transcriptional variability is lower 
at later stages of hCS differentiation42. This suggests that, for future 
applications, allowing hOLS to mature to around day 100 would 
result in higher consistency.

This hOLS method can be used to live image multiple stages of 
oligodendrocyte development over long periods of time in vitro to 
dissect the physical mechanisms of OPC migration and myelina-
tion. Here, as a proof of principle, we demonstrate that treatment 
with lysolecithin induces oligodendrocyte cell loss and that this 
process can be monitored by live imaging. Future studies can apply 
this cellular model to study leukodystrophies and other disorders 
affecting myelination in the CNS. The hOLS have the potential to 
be fused with other brain region-specific spheroids to derive brain 
assembloids19,21 to study the migration and differentiation of oligo-
dendrocyte lineage cells in different brain regions. hOLS may also 
potentially be combined with autologous patient-derived immune 
cells to study neuro-immune dysfunction, such as in multiple scle-
rosis. The personalized nature of the hiPS-cell-derived platform will 
further allow the study of these cellular processes in the context of 
disease, such as vanishing white matter disorder12, or environmental 
alterations, such as the effect of hypoxic injury on the premature 
brain43. The scalability of hOLS also makes this system amenable 
to genetic and small molecule screens to discover modulators of 
human myelination and identify novel therapeutics.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41593-018-0316-9.
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Methods
Culture of hiPS cells. The hiPS cell lines used in this study were validated using 
standardized methods as previously described44,45. Cultures were tested for and 
maintained mycoplasma free. A total of seven control hiPS cell lines derived from 
fibroblasts collected from seven subjects were used for experiments (Supplementary 
Table 1). The hiPS cell line H20961 was derived by the Gilad laboratory46. Approval 
for hiPS cell work was obtained from the Stanford Institutional Review Board panel 
and informed consent was obtained from all subjects.

Generation of hCS and hOLS from hiPS cells. hiPS cells were cultured on 
vitronectin-coated plates (5 μ​g ml−1, Thermo Fisher, A14700) in Essential 8 
medium (Thermo Fisher, A1517001). Cells were passaged every 4 d with 0.5 mM 
EDTA (Life Technologies, pH 8.0).

For the generation of 3D neural spheroids, hiPS cells were incubated with 
accutase (Innovate Cell Technologies, AT104) at 37°C for 7 min and dissociated 
into single cells. To obtain uniformly sized spheroids, AggreWell-800 (Stemcell 
Technologies, 34815) containing 300 microwells was used. Approximately 
3 ×​ 106 single cells were added per AggreWell-800 well in Essential 8 medium 
supplemented with the ROCK inhibitor Y-27632 (10 μ​M, EMD Chemicals, S1049), 
centrifuged to capture the cells in the microwells, and incubated at 37°C with 
5% CO2. After 18–24 h, spheroids consisting of approximately 10,000 cells were 
collected from each microwell by pipetting medium in the well up and down with 
a cut pipet tip and transferred into ultra-low attachment plastic dishes (Thermo 
Fisher, 3262) in Essential 6 medium (Thermo Fisher, A1516401) supplemented 
with two SMAD pathway inhibitors—dorsomorphin (2.5 μ​M, Sigma-Aldrich, 
P5499-CONF) and SB-431542 (10 μ​M, R&D Systems, 1614). For the first 5 d, 
Essential 6 medium was changed every day and supplemented with dorsomorphin 
and SB-431542.

To generate hOLS, on day 6 in suspension the spheroids were transferred 
to differentiation and maintenance medium (DMM) containing DMEM/F12 
(Thermo Fisher, 11330-057), B-27 supplement without vitamin A (Thermo Fisher, 
12587010), N2 supplement (Thermo Fisher, 17502048), minimum essential media 
(MEM) non-essential amino acids (1:100, Thermo Fisher, 11140076), GlutaMax 
(1:100, Thermo Fisher, 35050079), human insulin (25 μ​g ml−1, Sigma-Aldrich, 
I9278-5ML), β​-mercaptoethanol (0.1 mM; Sigma-Aldrich M3148), and penicillin-
streptomycin (1:100, Thermo Fisher, 15140163). The DMM was supplemented 
with 20 ng ml−1 EGF (R&D Systems, 236-EG-01M) and 20 ng ml−1 basic fibroblast 
growth factor (bFGF) (Peprotech, 100-26) for 19 d (until day 24) with daily 
medium change in the first 10 d, and every other day for the subsequent 9 d. The 
Wnt pathway inhibitor IWP-2 (5 μ​M, Selleckchem, S7085) was added from day 
4 until day 24, and the small molecule SHH pathway smoothened agonist (1 μ​M, 
Millipore Sigma, 566660) was added from day 12 to day 24. From day 25 to day 36, 
hOLS were cultured in DMM supplemented with T3 (60 ng ml−1, Sigma-Aldrich, 
T2877), biotin (100 ng ml−1, Sigma-Aldrich, B4639), NT-3 (20 ng ml−1, Peprotech, 
450-03), BDNF (20 ng ml−1, Peprotech, 450-02), cAMP (1 μ​M, Sigma-Aldrich, 
D0627), hepatocyte growth factor (5 ng ml−1, Peprotech, 315-23), insulin-like 
growth factor 1 (10 ng ml−1, VWR, 100-11), and PDGF-AA (10 ng ml−1, R&D 
Systems, 221-AA). From day 37 onwards, hOLS were cultured in complete DMM 
(DMM supplemented with T3, biotin, cAMP, and ascorbic acid; 20 μ​g ml−1, Wako 
Pure Chemical, 323-44822). From day 17 to day 43, media changes were performed 
every other day. From day 44 onwards, media changes were preformed every 4–5 d.

The generation of hCS from hiPS cells was performed similarly to a 
method we previously described20. To generate hCS, on day 6 in suspension the 
microwell-generated spheroids were transferred to neural medium containing 
Neurobasal A (Thermo Fisher, 10888022), B-27 supplement without vitamin 
A (Life Technologies, 12587), GlutaMax (Life Technologies, 1:100), and 
penicillin-streptomycin (1:100, Thermo Fisher, 15140163). Neural medium was 
supplemented with 20 ng ml−1 EGF (R&D Systems) and 20 ng ml−1 bFGF (R&D 
Systems) for 19 d (until day 24) with daily medium change in the first 10 d, and 
every other day for the subsequent 9 d. To promote differentiation of the neural 
progenitors into neurons, neural medium was supplemented with 20 ng ml−1 
BDNF (Peprotech, 450-02) and 20 ng ml−1 NT-3 (Peprotech, 450-03) with medium 
changes every other day. From day 44, only neural medium without growth factors 
was used for medium changes every 4 d.

Cryopreservation. hOLS were fixed in 4% paraformaldehyde (PFA) overnight. 
They were then washed in PBS and transferred to 30% sucrose for 3–7 d. 
Subsequently, they were rinsed in optimal cutting temperature (OCT) and 30% 
sucrose (1:1) and embedded in OCT (Tissue-Tek OCT Compound 4583, Sakura 
Finetek) and stored at −​80 °C. For immunofluorescence, 12–14-μ​m-thick sections 
were cut using a Leica cryostat.

Immunofluorescence. Cryosections were washed with PBS to remove excess OCT 
and blocked in 10% normal donkey serum (NDS, Abcam, AB7475), 0.3% Triton 
X-100 (Sigma-Aldrich, X-100) diluted in PBS for 1 h at room temperature. The 
sections were then incubated overnight at 4 °C with primary antibodies diluted in 
PBS containing 10% NDS and 0.3% Triton X-100. PBS was used to wash off the 
primary antibodies and the cryosections were incubated with secondary antibodies 
in PBS with 10% NDS and 0.3% Triton X-100 for 1 h. Dissociated cultures on 

glass coverslips were fixed in 4% PFA in PBS for 15 min at 4 °C and then rinsed 
for 5 min with PBS. The coverslips were then treated with 0.1% Triton X-100 in 
PBS for 15 min at room temperature except for when staining for PDGFRα​. The 
coverslips were blocked for 1 h at room temperature with 5% NDS in PBS and then 
incubated overnight at 4 °C with primary antibodies diluted in PBS containing 
5% NDS. PBS was used to wash off the primary antibodies and the cryosections 
were incubated with secondary antibodies in PBS with 5% NDS for 1 h. The 
following primary antibodies were used for immunofluorescence: anti-OLIG247 
(rabbit, 1:500, Millipore, AB9610), anti-NKX2-248 (mouse, 1:200, DSHB, 74.5A5), 
anti-PDGFRα​49 (rabbit, 1:500, Santa Cruz, sc-338), anti-O450 (mouse, 1:500, 
R&D Systems, MAB1326), anti-O151 (mouse, 1:200, R&D Systems, MAB1327), 
anti-MBP52 (rat, 1:300, Millipore, MAB386), anti-GFAP53 (rabbit, 1:1,000, Agilent 
DAKO, Z0334), anti-Neurofilament-H 200K54 (mouse, 1:500, Abcam, AB7795), 
anti-GABA55 (rabbit, 1:1,000, Sigma, A2052), and anti-MAP256 (guinea pig, 1:2,500 
on coverslips, 1:10,000 on cryosections, Synaptic Systems, 188004). Alexa Fluor 
dyes (Life Technologies) were used at 1:1,000 dilution on cryosections and 1:2,000 
on coverslips for amplification of the signal. Nuclei were visualized with Hoechst 
33258 (Life Technologies, H3549). Cryosections were mounted for microscopy 
on glass slides using Aquamount (Polysciences, 18606) and imaged on a Zeiss M1 
Axioscope, Leica TCS SP8 confocal microscope, or Keyence BZ-X710. Images  
were processed in ImageJ (Fiji Version 2.0.0). For the analysis in Fig. 5d, the 
proportion of MBP+ cells overlapping for more than 1 μ​m with NF-H in 0.5-μ​m 
z-sections was counted.

Dissociation and immunopanning of hOLS. For the enzymatic dissociation 
of hOLS for culture in monolayer and immunocytochemistry, hOLS were 
incubated with accutase for 30 min at 37 °C, washed with 10% fetal bovine serum 
(FBS) (Thermo Fisher, 16000-044) in Hank’s balanced salt solution (HBSS) 
(Thermo Fisher, 14180046), and gently triturated using a P200 pipette. Cells were 
centrifuged and resuspended in complete DMM. The cells were plated on glass 
coverslips (15 mm, Warner Instruments, 640713) coated with poly-L-ornithine 
(50 μ​g ml−1, Sigma-Aldrich, P3655) and laminin (5 μ​g ml−1, Sigma-Aldrich, L2020) 
at a density of around 1 spheroid per 2 coverslips.

To dissociate and isolate O4+ cells from hOLS for single cell profiling, we 
adapted a previously published protocol used for primary human fetal brain 
tissue27. Plastic Petri plates (10-cm, Thomas Scientific, 351058) were coated with 
20 μ​l anti-mouse IgG (Thermo Fisher, A-21042) in 7 ml 50 mM Tris-HCl pH9.5 
(Fisher Scientific, T1095) at 4 °C overnight. The following day, each plate was 
rinsed 3 times with PBS and then coated with 1.78 μ​l anti-O4 hybridoma (obtained 
from the B.A. Barres laboratory at Stanford University27) in 2.55 ml 0.02% BSA 
diluted in PBS (Caisson Labs, PBL02) at room temperature for at least 3 h and 
rinsed 4–5 times with PBS before use. Up to 6 spheroids per immunopanning 
plate were dissociated with accutase as described above and resuspended in 10 ml 
0.02% BSA. The resulting suspension was added to a precoated plastic Petri culture 
dish for at least 40 min with gentle occasional swirling. The supernatant was then 
removed from the O4-treated plates and the plates were rinsed with PBS 6–8  
times to remove unattached cells. O4+ cells were detached from the plates using 
0.25% trypsin (Thermo Fisher, 25200056) for 5 min at 37 °C. Cells were washed  
in DMEM (Thermo Fisher, 10313-039) containing FBS and centrifuged for 5 min 
at 1,200 r.p.m., and resuspended in 0.02% BSA and supplemented with Y-27632 
(10 μ​M, EMD Chemicals, S1049). The suspension was filtered through a 40-μ​m 
strainer (Fisher Scientific, 352340) and single cells were sorted into lysis buffer,  
4 μ​l each in 96-well plates (Bio-Rad, HSP9631). The lysis buffer contains 4 enzyme 
units (U) of RNase inhibitor (40 U μ​l−1, Clontech, 2313B), 0.05% Triton, 2.5 mM 
deoxynucleotide triphosphates (dNTP), 2.5 μ​M Oligo-dT30VN (IDT, RNase-free 
HPLC purification)57, external RNA control consortium (ERCC) RNA Spike-In 
Mix (1:2.4 ×​ 107 diluted, Thermo Fisher, 4456740). Plates were briefly vortexed and 
spun down before being stored in a –80 °C freezer until downstream processing.

Single cell RNA-seq library preparation. Sorted cells (n =​ 332) in 96-well plates 
were thawed on ice and immediately used for library preparation following the 
Smartseq2 protocol57 with modifications. Briefly, plates were incubated at 72 °C for 
3 min, during which RNA molecules with polyA tails were annealed with Oligo-
dT30VN, and then they were immediately chilled on ice. Reverse transcription 
mixture was added at 6 μ​l per well so that the final solution contained 95 enzyme 
units (U) SMARTScribe Reverse Transcriptase (100 U μ​l−1, Clontech, 639538), 
10 enzyme units (U) RNase inhibitor (40 U μ​l−1), 1 ×​ First-Strand buffer, 5 mM 
dithiothreitol, 1 M betaine, 6 mM MgCl2, 1 μ​M template switching oligos (TSO) 
(Exiqon, RNase-free HPLC purification)57. Reverse transcription was performed at 
42 °C for 90 min, followed by 70 °C, 5 min. To amplify the whole transcriptome,  
15 μ​l DNA amplification mixture was added with the final solution containing 
1 ×​ KAPA HIFI Hotstart Master Mix (Kapa Biosciences, KK2602), 0.1 μ​M in situ 
polymerase chain reaction (ISPCR) oligo57, and 0.56U lambda exonuclease (5 U μ​l−1,  
New England BioLabs, M0262S). cDNA was amplified using (1) 37 °C 30 min; (2) 
95 °C 3 min; (3) 21 cycles of 98 °C 20 s, 67 °C 15 s, 72 °C 4 min; and (4) 72 °C 5 min. 
Amplified cDNA was then purified using PCRClean DX beads (~0.7 volume, 
Aline Biosciences, C-1003-50), and reconstituted in 20 μ​l elution buffer (EB). The 
cDNA quality and quantity were assessed using a fragment analyzer (AATI, High 
Sensitivity NGS Fragment Analysis Kit: 1–6,000 base pairs (bp)), and samples with 
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concentrations below 0.08 ng μ​l−1 or abnormal peak patterns were filtered out. A 
total of 295 cDNA samples (retaining 88.9% of initially sorted) were diluted down 
to 0.15 ng μ​l−1 (only if above it) and pooled into a 384-well plate using a Mosquito 
X1 (TTP Labtech). Library preparation was performed using Nextera XT DNA 
Sample Prep Kit (Illumina, FC-131-1096) and Nextera XT 384 dual index primers, 
with the help of a Mosquito HTS machine for liquid transfer. For the tagmentation 
step, 0.4 μ​l cDNA (30–60 pg), 0.4 μ​l Tagment Enzyme, and 0.8 μ​l Tagment DNA 
Buffer were mixed and incubated at 55 °C for 10 min, followed by neutralization 
(0.4 μ​l Neutralize Tagment Buffer). Indexes (0.5 μ​M each) were added along with 
Nextera PCR Master Mix to a final volume of 4 μ​l in each well. PCR was performed 
as follows: (1) 72 °C 3 min; (2) 95 °C 30 s; (3) 10 cycles of 95 °C 10 s, 55 °C 30 s, 72 °C 
1 min; and (4) 72 °C 5 min. All samples were pooled (0.5 μ​l each) together into a 
1.5-ml Eppendorf tube, and the mixed libraries were purified twice with PCRClean 
DX beads (~0.7 volume each time). The final sample was reconstituted in 50 μ​l EB 
buffer, and the concentration and peaks were measured by Qubit and Bioanalyzer.

Single-cell RNA-sequencing and quality control. In total, 332 single cells using 
101-bp paired end reads were sequenced on a HiSeq 4000 (Illumina). Raw reads 
were preprocessed and aligned to the human genome (hg38) using the pipeline 
described in ref. 23, which includes Spliced Transcripts Alignment to a Reference 
(STAR) alignment and feature counts. As a quality metric, we first performed 
hierarchical clustering on all cells using a list of housekeeping genes and removed 
any cells with uniformly low expression across all genes. We separated the resulting 
dendrogram into two clusters containing cells that passed or failed this quality 
control. All downstream analyses were performed using only the 295 cells that 
passed quality control. After quality control and mapping, there was an average of 
509,376 mapped reads per cell. These 295 cells were added to data from single cells 
collected in previous studies (adult cells from ref. 23, hCS from ref. 24) for a total 
of n =​ 1,473 cells. Cells from each of these studies were collected using identical 
protocols and sequencing methods. To control for unwanted variation in batch 
effects, all cells were normalized using Remove Unwanted Variation (RUVg) 
methods58 with the following normalization genes: CYC1, EIF4A2, SDHA, ACTB, 
UBC, TOP1, RPL13A, GAPDH59.

Dimensionality reduction, clustering, and Monocle analysis. All data analyses 
were performed using the R software (https://www.r-project.org/). Dimensionality 
reduction was performed in three steps. First, we calculated the overdispersion 
of each gene as described in ref. 60. We then selected the top 2,000 over-dispersed 
genes and constructed a cell-to-cell distance matrix (1 minus absolute correlation) 
of all cells (using either O4 immunopanned alone, or O4 immunopanned cells 
along with primary human single cells from ref. 23 and ref. 24. The distance matrix 
was reduced to two dimensions using t-SNE25. Clustering of groups of similar 
cells was performed on the two-dimensional t-SNE space using k-means. The 
lineage tree for the single cells was constructed using the Monocle algorithm 2.0 as 
described in ref. 26. The lineage trees included all O4 immunopanned single cells as 
well as primary adult human OPCs and oligodendrocytes from ref. 23. t-SNE plots 
were colored by hiPS cell line using metadata provided in the Gene Expression 
Omnibus accession GSE115011. These metadata were also used to determine the 
proportion of dividing, immature (OPCs and NFOs), and mature myelinating 
oligodendrocytes (as defined by the k-means clustering of the t-SNE space 
described above) attributed to each hiPS cell line. Correlations between hiPS cell 
lines were calculated using Pearson correlation values between the log normalized 
gene expression data for each group.

Viral labeling and assembly of neural spheroids. The viral infection of the 3D 
neural spheroids was performed as previously described20,61. In brief, hOLS were 
transferred to a 1.5-ml microcentrifuge Eppendorf tube containing 300 μ​l complete 
DMM with virus and incubated overnight. The next day, hOLS were transferred 
into fresh complete DMM in ultra-low attachment plates. Lentivirus (lenti-Sox10-
MCS5::eGFP+; construct reported and received from F.J. Sim32) was generated by 
transfecting HEK293T cells with Lipofectamine 2000 (Thermo Fisher, 11668019) 
and concentrating the supernatant with the Lenti-X concentrator (Takara Bio, 
631232) 72 h later.

Live cell imaging and analysis of Sox10-MCS5::eGFP + cell migration. 
The migration of Sox10-MCS5::eGFP+ cells was imaged for 8–12 h under 
environmentally controlled conditions (37 °C, 5% CO2) in intact hOLS using 
a confocal microscope with a motorized stage (Leica SP8). The hOLS were 
transferred to a well in a 96-well glass-bottom plate (Thomas Scientific, 4580) in 
200 μ​l complete DMM and incubated in an environmentally controlled chamber 
for 15–30 min before imaging. During a given recording session, up to 6 hOLS 
were imaged at a depth of 60–70 μ​m and at a rate of 13–20 min per frame.

Real-time qPCR. mRNA was isolated using the RNeasy Mini kit (Qiagen, 74106) 
and RNase-Free DNAse I kit (Thermo Fisher, 18068-015), and template cDNA was 
prepared by reverse transcription using the SuperScript III First-Strand Synthesis 
SuperMix for qRT–PCR (Thermo Fisher, 11752250). qPCR was performed using 
SYBR Green (Thermo Fisher, 4312704) on a ViiA7 machine (Applied Biosystems, 
Life Technologies). Primers used are listed in Supplementary Table 3.

Transmission electron microscopy. hOLS were fixed in 2% glutaraldehyde and 
4% PFA in 0.1 M sodium cacodylate buffer, pH 7.4, for 1 h at room temperature. 
After fixation, samples were then moved to 4 °C for immediate processing. The 
buffer was removed and replaced with 1% OsO4 in double distilled H2O (ddH2O) 
and the hOLS were gently shaken for 1 h at 4 °C. Samples were washed 3 times for 
5 min each with cold ddH2O. After the third rinse the hOLS were kept in 1% uranyl 
acetate in ddH2O, and stained for 2 h to overnight. The hOLS were then dehydrated 
by rinsing for 10 min each in 50% ethanol at 4 °C, 70% ethanol at 4 °C, 95% ethanol 
at room temperature, and 100% ethanol at room temperature. A second 10-min 
rinse in 100% ethanol was performed followed by a 15-min rinse in acetonitrile 
at room temperature. The hOLS were transferred to 1:1 acetonitrile/epon for 1 h 
and then to 1:2 acetonitrile/epon overnight. The following day, the hOLS were 
placed in 100% epon for 2–3 h and then placed in molds filled with 100% epon and 
allowed to settle for 4 h to overnight. The molds were then polymerized in a 65 °C 
oven for 24 h. Samples were sectioned and imaged using a JEOL JEM1400 120-kV 
transmission electron microscope.

Electrophysiology. Sections of hOLS at days 96–175 of differentiation were 
obtained using an approach we previously described20. Briefly, hOLS were 
incubated in bicarbonate-buffered artificial cerebrospinal fluid (aCSF) at 23 °C and 
equilibrated with a mixture of 95% O2 and 5% CO2. The aCSF solution contained: 
126 mM NaCl, 26 mM NaHCO3, 10 mM glucose, 2.5 mM KCl, 1.25 mM NaH2PO4, 
1 mM MgSO4, and 2 mM CaCl2. Slicing was performed using a Leica VT1200 
vibratome. Immediately after sectioning, slices were moved to a circulation 
chamber containing oxygenated aCSF at room temperature.

For patch-clamp recording, cells were identified by the presence of the Sox10-
MCS5::eGFP fluorescent reporter using an upright microscope (Scientifica). 
Recording electrodes of borosilicate glass had a resistance of 4–6 MΩ​ when filled 
with internal solution. The internal solution contained: 145 mM K-gluconate, 
0.1 mM CaCl2, 2.5 mM MgCl2, 10 mM HEPES, 0.2 mM EGTA, and 4 mM 
Na-phosphocreatine. Glutamatergic currents were blocked by application of NBQX 
(20 μ​M, Tocris) and APV (100 μ​M, Tocris), which were added to the bathing 
solution. Electrical simulation was delivered using a bipolar tungsten electrode 
(FHS) placed 100–200 μ​m away from a recorded cell. Stimulations were delivered 
to slices for 0.1 ms at 300 μ​V and separated by at least 10 s. Voltage-gated sodium 
channels were blocked by application of tetrodotoxin (TTX) (1 μ​M, Tocris). All 
recordings were performed at room temperature (25 °C). Measurements were 
corrected for a liquid junction potential of 12 mV.

Data were collected using a 1550A digitizer (Molecular Devices) and a 700B 
patch-clamp amplifier (Molecular Devices), and were acquired with pClamp  
10.6 software (Molecular Devices). Data were low-pass filtered at 10 kHz and 
digitized at 20 kHz. Averaging, digital subtraction of null traces, and current peak 
detection were performed using Clampfit (Molecular Devices). Data were fitted 
using Origin (OriginLab).

Lysolecithin treatment and live imaging. Lysolecithin was dissolved at a 
concentration of 0.25 mg ml−1 in complete DMM and added to day 70–75  
hOLS in 1.5-ml Eppendorf tubes for 15–17 h at 37 °C. Following treatment, 
hOLS were rinsed twice with complete DMM. Untreated and treated hOLS were 
transferred to a well of a 96-well glass-bottom plate (Thomas Scientific, 4580) in 
200 μ​l complete DMM 4–6 h after rinsing, and incubated in an environmentally 
controlled chamber for 15–30 min before imaging. During a given recording 
session, hOLS were imaged at a depth of 60–70 μ​m and at a rate of 10–15 min  
per frame for 12 h. Quantification of Sox10-MCS5::eGFP+ disappearing cells  
was performed blind.

Statistics and reproducibility. Data are presented as mean ±​ s.e.m. unless 
otherwise indicated. Distribution of the raw data was tested for normality  
of distribution; statistical analyses were performed using the Student’s t-test  
(two-sided), Mann–Whitney U-test (two-sided), or Kruskall–Wallis tests.  
Sample sizes were estimated empirically. One hOLS sample was removed  
in the qPCR analysis of VGLUT1 in Supplementary Fig. 1j following Grubb’s  
test for outliers (P <​0.05). No statistical methods were used to determine  
sample size, but sample sizes for each type of experiment in this study are 
consistent with previously published work20,21,24,42,62,63. For lysolecithin treatment 
experiments, samples were randomly distributed between the two conditions  
and data collection and analysis were performed blinded, and unblinded for all 
other experiments.

Accession codes. Gene expression data are available in the Gene Expression 
Omnibus under accession number GSE115011.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Gene expression data have been deposited in the Gene Expression Omnibus under 
accession number GSE115011. The data that support the findings of this study are 
available on reasonable request from the corresponding author.
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) hiPS cell lines (Suppl. Table 1) were derived in the laboratory w/ IRB approval and written consent, except for one line which 
was obtained from the Gilad lab (details in text). 

Authentication  hiPS cell lines were assessed for pluripotency and genomic integrity (by Cyto-SNP arrays). HEK293T was not authenticated.
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