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Abstract

Since their introduction in the 1960s, benzodiazepines (BZs) remain one of the most
commonly prescribed medications, acting as potent sedatives, hypnotics, anxiolytics,
anticonvulsants, and muscle relaxants. The primary neural action of BZs and related
compounds is augmentation of inhibitory transmission, which occurs through allosteric
modulation of the gamma-aminobutyric acid (GABA)-induced current at the gamma-
aminobutyric acid receptor (GABAAR). The discovery of the BZ-binding site on GABAARs
encouraged many to speculate that the brain produces its own endogenous ligands to
this site (Costa & Guidotti, 1985). The romanticized quest for endozepines, endogenous
ligands to the BZ-binding site, has uncovered a variety of ligands that might fulfill this
role, including oleamides (Cravatt et al., 1995), nonpeptidic endozepines (Rothstein
et al., 1992), and the protein diazepam-binding inhibitor (DBI) (Costa & Guidotti,
1985). Of these ligands, DBI, and affiliated peptide fragments, is the most extensively
studied endozepine. The quest for the “brain's Valium” over the decades has been elu-
sive as mainly negative allosteric modulatory effects have been observed (Alfonso, Le
Magueresse, Zuccotti, Khodosevich, & Monyer, 2012; Costa & Guidotti, 1985), but recent
evidence is accumulating that DBI displays regionally discrete endogenous positive
modulation of GABA transmission through activation of the BZ receptor (Christian
et al., 2013). Herein, we review the literature on this topic, focusing on identification
of the endogenous molecule and its region-specific expression and function.
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ABBREVIATIONS
BZ benzodiazepine

BZR benzodiazepine receptor

CBR central benzodiazepine receptor

CNS central nervous system

DBI diazepam-binding inhibitor

DZP Diazepam, Valium®

FLZ flumazenil

GABA gamma-aminobutyric acid

GABAAR gamma-aminobutyric acid receptor

PBR peripheral benzodiazepine receptor

PAM positive allosteric modulator

NAM negative allosteric modulator

ODN octadecaneuropeptide

TTN triakontatetraneuropeptide

1. INTRODUCTION

In 1977, two separate groups utilized radiolabeled diazepam (DZP)

binding to brain extracts to identify benzodiazepine receptors (BZRs) in

the central nervous system (CNS) (Braestrup & Squires, 1977; M€ohler &
Okada, 1977; see chapter “The Legacy of the Benzodiazepine Receptor:

From Flumazenil to Enhancing Cognition in Down Syndrome and Social

Interaction in Autism” by H.Mohler, in this volume). This occurred shortly

after identification of endogenous ligands acting on opiate receptors

(Hughes et al., 1975), termed endorphins. These findings along with a num-

ber of studies demonstrating innate BZ-like physiological activity led inves-

tigators to hypothesize that the brain might produce endogenous BZR

ligands or endozepines (Costa & Guidotti, 1985; Iversen, 1977). The hunt

for endozepines has proven to be exceptionally challenging due to their

complex pharmacological and physiological activities. With an erratic his-

tory spanning more than three decades, studies in pursuit of these mysterious

endozepines and their abounding physiological functions persist.

The molecular mechanism of BZ activity was first indicated by the dis-

covery of that BZs influence GABA function (Costa, Guidotti, & Mao,

1975; Haefely et al., 1975). Later, the purified BZR protein complex was

shown to contain binding sites for both GABA and BZs (Schoch,

Häring, Takacs, Stähli, & M€ohler, 1984; Schoch & M€ohler, 1983;

Sigel & Barnard, 1984), suggesting that BZs and GABA bind to the same
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receptor. Heterologous expression of recombinant gamma-aminobutyric

acid receptors (GABAARs) revealed that BZs bind to an integral allosteric

modulatory site (the central benzodiazepine receptor, CBR) located on

the GABAAR and, once bound, modulate the GABA induced chloride cur-

rent by modifying the apparent GABA-binding affinity (Seeburg et al.,

1990). In the remainder of this chapter, we largely focus on this BZR,

the so-called CBR—the pharmacophore that directly modulates GABA

function. A distinct binding site not affiliated with GABAAR binding,

the peripheral benzodiazepine receptor (PBR), will be discussed below.

BZ-binding site ligands, such as the BZ Diazepam (DZP), that enhance

the actions of GABA are classified as CBR agonists or positive allosteric

modulators (PAMs). Ligands that bind to the BZ-binding site and reduce

the actions of GABA, such as beta-Carbolines, are known as CBR-inverse

agonists or negative allosteric modulators (NAMs). Additionally, ligands

such as Flumazenil (FLZ) and similar compounds (Hunkeler et al., 1981)

bind the BZ-binding site and inhibit the effects of both NAMs and PAMs,

but they have no intrinsic effect on the actions of GABA and are considered

as BZ antagonists.

Initial attempts to identify endozepines relied on radioligand-binding

assays in which isolated brain extracts were shown to displace 3H-BZs from

brain membranes. Using this method, several putative endozepines were

identified, yet evidence for physiological modulation by these ligands has

generally lagged behind, in some cases for decades. Recent studies breathe

new life into the unremitting search for endozepines and their role in reg-

ulation of GABA transmission.

2. PHYSIOLOGICAL EVIDENCE OF ENDOZEPINES

The synthesis of RO 15-1788 (or flumazenil, FLZ), the first known

BZ antagonist (Hunkeler et al., 1981; Ramerstorfer, Furtm€uller, Vogel,
Huck, & Sieghart, 2010), facilitated a large body of research supporting

the hypothesis that endogenous ligands to the BZ-binding site exist and

are functionally relevant in vitro and in vivo. While FLZ has been a valuable

tool for identification of physiological BZ actions, its use for this purpose has

limitations. For example, it has been shown that FLZ can exert PAM effects

in heterologously expressed GABAARs, especially at high concentrations

(Ramerstorfer et al., 2010). Importantly, FLZ has never been shown to have

NAM effects on heterologously expressed GABAARs, suggesting that any
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NAM effects of FLZ on GABA-mediated inhibition are most likely due to

antagonism of an endogenous ligand.

In vitro studies have suggested a number of circuits in which endozepines

are constitutively expressed and physiologically active, as evidenced by sup-

pressive effects of FLZ on GABA-mediated inhibition, mainly through a

decrease in response duration. For example, FLZ suppresses IPSP(C)s in hip-

pocampus (King, Knox, Dingledine, 1985; Krespan, Springfield, Haas, &

Geller, 1984) and in neocortical neuronal cultures (Vicini et al., 1986).

FLZ has been shown to suppress inhibition in dentate gyrus granule cells

in the pilocarpine model of temporal lobe epilepsy (Leroy, Poisbeau,

Keller, & Nehlig, 2004) and to suppress inhibition in layer II/III neocortical

pyramidal neurons (Ali & Thomson, 2008). Long-term potentiation of

inhibitory synapses in hippocampal CA1 area was associated with an increase

in IPSC amplitude that was suppressed by FLZ (Xu & Sastry, 2005). Most

recently, it has been shown that FLZ suppresses synaptic inhibition neurons

of the thalamic reticular nucleus (nRt, Christian et al., 2013), indicating the

presence of an endozepine in this nucleus. Together, these studies with FLZ

strongly support the presence of endogenous PAM activity in several distinct

brain regions, indicating this is a broadly implemented endogenous modu-

latory mechanism in the CNS.

A number of interesting clinical findings are consistent with FLZ antag-

onism of endozepine function. For example, FLZ treatment can induce

panic attacks in patients with panic disorder but not in healthy controls

(Nutt, Glue, Lawson, & Wilson, 1990). It can also precipitate greater panic

response in women with premenstrual dysphoric disorder compared to con-

trols (Le Mellédo, Van Driel, Coupland, Lott, & Jhangri, 2000) and to

reverse stupor associated with hepatic encephalopathy (Als-Nielsen,

Gluud, & Gluud, 2004; Baraldi et al., 2009). Together these studies suggest

a physiological role for an accumulation of endozepines in the extracellular

space, i.e., a physiological buildup, in regulating anxiety/panic. In addition,

serum levels of substances that inhibit FLZ binding to rat cerebellar mem-

branes were reported to increase twofold during delivery by spontaneous

labor, an effect not seen in patients undergoing cesarean section

(Facchinetti, Avallone, Modugno, & Baraldi, 2006), suggesting that physi-

ological states such as labor might cause endozepine buildup.

The relevance of these findings to human epilepsy patients remains for

the moment unknown, as evidence for endozepine actions in epilepsy

patients is inconclusive. FLZ can provoke seizures in patients, but at least

some patients were likely receiving BZ treatment (Spivey, 1992). For
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example, in a series of 67 patients undergoing evaluation prior to epilepsy

surgery (Schulze-Bonhage & Elger, 2000), seizures were provoked in

8 (12%)—all had previously been treated with BZs. Case reports suggest

worsening of seizures by FLZ in infants and in the elderly (McDuffee &

Tobias, 1995; Thomas, Lebrun, & Chatel, 1993). The reported effects of

FLZ on seizures in animal studies are also mixed. In rats younger than

2 weeks, FLZ worsens minor motor seizures induced by PTZ

(Rathouská, Kubová, Mares, & Vorlı́cek, 1993). Notably in high-dose con-

vulsant models, either suppression of seizure activity (Kaijima, Le Gal La

Salle, & Rossier, 1983) or no effect (Hunkeler et al., 1981) has been

reported. In the GAERS model of genetic spontaneous absence epilepsy,

FLZ had concentration-dependent effects, with low doses suppressing

spike-wave discharges (SWDs) and higher doses enhancing them

(Marescaux et al., 1984). In addition, a genetic mutation (R43Q) in the

human γ2 subunit associated with both familial absence and febrile seizures

was shown to abolish (Wallace et al., 2001) or to reduce (Bowser et al.,

2002) in vitro sensitivity of specific GABAARs to DZP. The mechanism for

increased seizure activity related to receptor insensitivity to DZP, an exoge-

nous ligand, is not yet known. One provocative hypothesis is that the muta-

tion renders the receptors insensitive to a naturally occurring endogenous

BZ. Since an endogenous BZwould likely have antiseizure properties, muta-

tions in the receptor which prevent binding of the endogenous BZ would

be expected to cause seizures. However, receptor trafficking is also affected

by this mutation (Kang & Macdonald, 2004; Sancar & Czajkowski, 2004)

and could contribute to the seizure activity, so the role of endozepines in

seizures related to the γ2R43Q mutation remains controversial.

FLZ has also been reported to reverse idiopathic recurrent stupor

(Rothstein et al., 1992), although in recent years, it has become evident that

at least some patients who responded to FLZ had surreptitious BZ usage

(Granot, Berkovic, Patterson, Hopwood, &Mackenzie, 2004) and this field

remains controversial (Cortelli et al., 2005). In a recent study, FLZ normal-

ized vigilance in a well-characterized group of patients with hypersomnia.

A peptidergic PAM activity was found in cerebrospinal fluid (CSF) of these

patients (Rye et al., 2012). However, the PAM did not interact with a

potentiation by the BZ midazolam and partly persisted in α1(H101R),

GABAARs with a point mutation rendering them BZ insensitive, indicating

that it may not be a classical BZ-mimicking agent (Rye et al., 2012). The

identity of this CSF PAM and its role in the pathophysiology of hypersomnia

remain unknown.
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3. CANDIDATE ENDOZEPINES

Efforts to uncover endogenous ligands for the BZ-binding site have led

to identification of several putative endozepines (Costa & Guidotti, 1985).

These molecules have included peptides, fatty acid derivatives, and small

organic molecules including purine metabolites and naturally occurring

BZs. A number of studies describe isolation of naturally occurring BZs (e.g.

molecules with a benzene ring fused to a diazepine ring) including DZP

and nordiazepam from animal brains (Medina, Peña, Piva, Paladini, &

De Robertis, 1988; Rothstein et al., 1992; Sangameswaran & de Blas,

1985; Sangameswaran, Fales, Friedrich & De Blas, 1986; Unseld, Krishna,

Fischer, & Klotz, 1989), but interpretations of these findings were limited

due to the inability to discriminate between endogenous and exogenous

BZs and possible contamination. In 1990, Unsled et al. observed the presence

of BZs in human brain tissue specimens banked before the initial reports of BZ

synthesis in the 1950s, essentially excluding contamination with synthetically

derived BZs as an explanation at least in those cases (Unseld, Fischer,

Rothemund, & Klotz, 1990). However, natural BZs have been found in

plants, plant products, and soil (Unseld et al., 1990, 1989; Wildmann et al.,

1987, 1988) suggesting ingestion of exogenous naturally occurring BZs as

an explanation for the presence of these compounds in brain tissue.

Fatty acids and other small organic molecules have also been proposed as

putative endozepines. Oleamides isolated from sleep-deprived animals have

been shown to have hypnotic effects (Cravatt et al., 1995). These effects

depend on the expression of the GABAAR ß3 subunit (Laposky,

Homanics, Basile, & Mendelson, 2001), but direct evidence for these

compounds binding to the BZ-binding site and activating the GABAAR

is lacking. Other small molecule candidate ligands including inosine, hypo-

xanthine, and nicotinamide have low affinity for the GABAAR BZ-binding

site and are present in low concentrations in the brain and thus are unlikely

to represent the natural physiological relevant endozepines (Asano &

Spector, 1979; Bold, Gardner, & Walker, 1985; Lapin, 1980; Tallman,

Paul, Skolnick, & Gallager, 1980).

4. DIAZEPAM-BINDING INHIBITOR

The most widely studied endozepine to date is diazepam-binding

inhibitor (DBI).This 10 kDaproteinwasoriginally isolated andpurified from
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rat brain based on its ability to displace exogenous BZs (DZP) from whole

brain membrane preps (Guidotti et al., 1983). DBI is highly conserved across

eukaryotic species from yeast to mammals (Gray, Glaister, Seeburg,

Guidotti, & Costa, 1986; Lihrmann et al., 1994; Mocchetti, Einstein, &

Brosius, 1986; Owens, Sinha, Sikela, & Hahn, 1989). Early studies of DBI

confirmed its expression in the brain—both in neurons and astrocytes

(Alho et al., 1985; Alho, Bovolin, Jenkins, Guidotti, & Costa, 1989; Alho,

Harjuntausta, Schultz, Pelto-Huikko,&Bovolin, 1991).However, concerns

about its role as a neuromodulator were raised when it was determined that

DBI is identical to acyl-CoA-binding protein (Knudsen, 1991), a well-

characterized cytosolic protein with a primary role in fatty acid metabolism

(Mogensen, Schulenberg,Hansen, Spener, &Knudsen, 1987). Furthermore,

it was unclear how a cytosolic protein could interact with an extracellular

BZ-binding site on GABAARs in the intact brain. Consequently, interest

in DBI as a modulator of GABA signaling waned over the following decade.

Subsequent studies of the social amoebaDictyostelium discoidium, however,

have demonstrated that the homologue of DBI in this organism is secreted

through an unconventional pathway and, after activation by proteolytic

cleavage in the extracellular space, binds to and activates a cell surface receptor

as part of the pathway for starvation-induced sporulation (Manjithaya,

Anjard, Loomis, & Subramani, 2010). As earlier immunlocalization assays

demonstrated strong expression of DBI in astrocytes, studies on release of

DBI in the mammalian brain have focused on astrocytes and the roles they

might play in DBI signaling. Indeed, cultured astrocytes from rat brain have

been found to readily secrete DBI through an unconventional pathway that

can be induced by autophagy, similar to that described for secretion by

Dictyostelium (Loomis, Behrens, Williams, & Anjard, 2010). Several means

ofDBI secretionhavebeendemonstrated in astrocyte cultures, indicating that

DBI release is a common downstream consequence of several distinct signal

pathways. For example, treatment with steroid hormones (Loomis et al.,

2010), PAC1-R ligands (Masmoudi et al., 2003), urotensin II ( Jarry et al.,

2010), elevated K+ (Ferrarese et al., 1987; Qian, Bilderback, & Barmack,

2008), and ß-amyloid (Tokay et al., 2008) induces secretion, while somato-

statin andGABAB receptor activation inhibit release (Masmoudi et al., 2005).

Experiments with brain slices performed under conditions in which astro-

cytes were metabolically poisoned by the aconitase inhibitor fluorocitrate

(Christian & Huguenard, 2013b) failed to demonstrate a DBI-dependent

endozepine activity in nRt, suggesting that astrocytes are a primary source

of DBI-dependent endozepines.
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Ten different DBI transcript variants have been reported, with region-

specific expression (Ludewig, Klapper, Wabitsch, D€oring, & Nitz, 2011;

Ludewig, Nitz, Klapper, & D€oring, 2011; Nitz, Kruse, Klapper, &

D€oring, 2011), all of which have an alternative promoter or first exon dif-

ferentiating the proteins at the 50-end. DBI promoters display multiple sites

for transcription factors, including AP-1/2, SP-1, ETF, Y-box-binding pro-

tein, CTF/NF-1, C/EBP, HNF-3, SRE-like sequence, GREs, and PPREs.

The role for different transcripts in the different putative functions of DBI

(fatty acid metabolism and modulation of GABAAR signaling) remains

unclear.

DBI has a number of putative endoprotease sites and several cleavage

products including triakontatetraneuropeptide (TTN, DBI(17–50)),

octadecaneuropeptide (ODN, DBI(33–50)), and octapeptide (OP, DBI

(43–50)) (Ferrero, Santi, Conti-Tronconi, Costa, & Guidotti, 1986) which

have been identified in rat and rhesus monkey CNS (Alho et al., 1989, 1991;

Slobodyansky, Kurriger, & Kultas-Ilinsky, 1992) and all demonstrate the

ability to displace BZs and modulate inhibition via allosteric modulations

of the GABAAR. The majority of evidence for the action of DBI peptides

at GABAARs suggests negative allosteric modulation. Indeed, exogenous

application of DBI reduces synaptic inhibition in cultured neurons

(Bormann, 1991; Costa & Guidotti, 1991). Recently, a NAM effect of

ODNwas demonstrated on GABA-mediated currents from progenitor cells

of the subventricular zone. Activation of GABAARs on neural progenitors

favors their differentiation to neuroblasts while ODN reduces GABA-

evoked currents and increases proliferation, suggesting a natural role for

ODN in the regulation of this critical developmental process (Alfonso, Le

Magueresse, Zuccotti, Khodosevich, & Monyer, 2012). By contrast, Chris-

tian et al. have provided evidence that DBI expression is necessary for PAM

endozepine activity in thalamic reticular nucleus (nRt). Animals devoid of

DBI gene product did not show FLZ effects, while viral overexpression of

DBI rescued the response. These data showed that dbi gene and products

were required for the thalamic endozepine activity (Christian et al.,

2013). This study further demonstrated that endozepine expression in the

thalamus was nucleus specific. FLZ effects on synaptic inhibition were only

observed in nRt, but not in relay nuclei such as the ventrobasal (VB) com-

plex of VPL/VPM. Sniffer patch biosensors, made up of out-side out mem-

brane patches obtained from VPL/VPM relay neuron membranes

(Christian & Huguenard, 2013a), were able to detect endozepine actions,

as shown by FLZ effect, when the patches were placed within nRt, but
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not in VB. This result had two important conclusions, as follows: (1) the

endozepine response was not dependent on the specific GABAAR compo-

sition in nRt, α3β3γ2 (Pirker, Schwarzer, Wieselthaler, Sieghart, & Sperk,

2000), as they were detected with patches from relay neurons, which

express a quite distinct receptor composition: α1β2γ2, and (2) the end-

ozepines were constitutively expressed in the extracellular space, site of

BZ binding on GABAARs, only in nRt, pointing to a nucleus-specific

DBI processing path/way that locally secretes DBI to the extracellular

space where it is presumably cleaved to the final PAM product

(Christian et al., 2013). Thus, DBI appears to be capable of both PAM

and NAM effects on GABAAR signaling. It is not yet known if specific

peptide ligand fragments or subunit-specific GABAARs mediate these

opposing actions of DBI.

Behavioral studies of DBI peptides activity have revealed a complex pic-

ture. For example, ODN and fragments were reported to suppress PTZ-

induced seizures in rats and audiogenic seizures in dba/2j mice, with both

effects blocked by FLZ (Garcia de Mateos-Verchere, Leprince, Tonon,

Vaudry, & Costentin, 1999). Notably, maximal electrical shock-induced

seizures were not affected. Based on a U-shaped ODN dose–response rela-

tionship for PTZ seizures, these authors suggested that ODN itself may be an

inverse agonist (i.e., NAM), perhaps at unique GABAAR subunit combina-

tions, and these actions would compete with an agonistic (i.e., PAM) pro-

teolytic fragment of ODN. At high ODN doses then the antagonist effect of

the parent compound would dominate through competitive interaction at

the BZ-binding site. Another study demonstrated proconvulsive effects of

ODN when injected into the brain (Ferrero et al., 1986). Intra-

cerebroventricular injections of DBI, ODN, and TTN into rats induced

anxiogenic activity via the BZ-binding site located onGABAARs and there-

fore were antagonized by FLZ (Slobodyansky, Berkovich, Bovolin, &

Wambebe, 1990; Slobodyansky, Guidotti, Wambebe, Berkovich, &

Costa, 1989). Inhibition within nRt is proposed to regulate absence seizure

generation (Huntsman, Porcello, Homanics, DeLorey, &Huguenard, 1999;

Schofield, Kleiman-Weiner, Rudolph, & Huguenard, 2009) and recent

studies suggest the existence of a DBI-related peptide that serves a natural

seizure-regulating function in the nRt (Christian et al., 2013). Consistent

with this was the finding that α3H126R mice, devoid of endozepine sensi-

tivity in nRt neurons, experienced more intense seizures that presumably

resulted from lack of this endogenous, adaptive, regulation (Christian

et al., 2013). Although DBI peptide(s) play a role in circuit excitability

155Endozepines

Author's personal copy



and network synchronization, the mechanisms by which DBI

peptide(s) regulate seizure activity either constitutively or in an activity-

dependent fashion at this point remain unclear.

It is important to note that DBI peptides can modulate GABA-mediated

currents through an alternate pathway distinct from binding to the

BZ-binding site on GABAARs. Whereas DBI and ODN were originally

found to bind the BZ-binding site on GABAARs, it was later discovered that

DBI and TTN can bind a second BZR, the so-called peripheral

benzodiazepine receptor (PBR) (Slobodyansky et al., 1990, 1989). The

PBR, also known as translocator protein, is a cholesterol transporter located

in outer mitochondrial membranes found ubiquitously in non-neuronal and

neuronal tissue (Verma & Snyder, 1989; Gavish, Katz, Bar-Ami, &

Weizman, 1992). DBI (and fragments) binding to the PBR stimulates cho-

lesterol transport into mitochondria, increasing the concentration of this

metabolite which is rate limiting for neurosteroid synthesis (Costa et al.,

1994; Korneyev et al., 1993). Neurosteroids bind to an allosteric site on

the GABAAR, distinct from the BZ-binding site, and potentiate synaptic

and extrasynaptic GABAAR function (Puia, Vicini, Seeburg, & Costa,

1991; Porcello, Huntsman, Mihalek, Homanics, & Huguenard, 2003; see

chapter “Inhibitory Neurosteroids and the GABAA Receptor” by T. Smart,

in this volume). Therefore, DBI peptides are capable of binding to and

directly modulating GABAAR-mediated phasic (synaptic) inhibition and

indirectly (via neurosteroid synthesis) modulating GABAAR-mediated

tonic (extrasynaptic) inhibition; thus providing multiple distinct and poten-

tially cooperative means of adaptive inhibitory control in the brain.

5. CONCLUSION

The search for endozepines began over 30 years ago, and recent stud-

ies have identified clear DZP-like, PAM actions, yet several key unanswered

questions remain. Are the naturally occurring BZs found in the CNS exclu-

sively from an endogenous source such as DBI, or might there also be con-

tributions from the environment, for example, from dietary sources? In

either case, what are the processing pathways that produce and/or modify

such ligands? Regarding DBI, what mechanisms serve to mediate

nucleus-specific secretion, as is the case in the thalamus where DBI/BZ

effects were only observed in the ventral thalamus (nRt) but not dorsal thal-

amus (VB)? How can a single DBI gene encode products with both PAM

and NAM effects on the GABAAR? Two possible explanations for the
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opposing activity of DBI are that (1) DBI peptide activity at GABAARs var-

ies depending on a specific peptide fragment that binds and/or (2) that DBI

peptide(s) activity varies depending on the specific GABAAR subunit com-

position. To characterize binding and activity specificity of the individual

DBI peptide products at distinct GABAARs, several key questions must

be answered. For example, which of the various neuronal factors that reg-

ulate the intricate expression, processing, and release of DBI peptide frag-

ments are involved in producing peptides capable of GABAAR

modulation? Which other posttranslational modifications are required for

DBI peptides to form an active PAM or NAM? Altogether, the studies of

idiopathic recurrent stupor suggest an unidentified GABAAR PAM(s) still

remains. Accordingly, what is their identity and how are they produced,

secreted, and/or metabolized?

This chapter, along with previous studies, attends to the role of

endozepine activity on synaptic (phasic) inhibition. The majority of

extrasynaptic GABAARs mediating extrasynaptic (tonic) inhibition con-

tain the δ subunit, rendering them insensitive to BZs (Nusser & Mody,

2002). However, there is a growing body of evidence that tonic inhibition,

in some cells, is mediated via α5 and γ2 subunit-containing receptors capa-
ble of BZ modulation ( Jo et al., 2011) and, therefore, may be sensitive to

direct endozepine modulation. Furthermore, endozepine activation of the

PBR stimulates the synthesis of neurosteroids, known to affect α4 or α6
and δ subunit-containing extrasynaptic tonic receptors (Stell, Brickley,

Tang, Farrant, & Mody, 2003), providing a potential pathway for end-

ozepines to indirectly regulate tonic inhibition. The capacity to which

endozepines directly or indirectly modulate GABAAR-mediated tonic

inhibition is a compelling question; however, it has yet to be addressed

experimentally.

BZs are one of the most commonly prescribed medications for a variety

of psychiatric and neurological disorders. There is substantial evidence that

endozepines also play a critical role in many of these disorders, for example,

by providing an endogenous mechanism for regulation of anxiety and sei-

zures. Answers to the remaining questions will further our understanding of

the complex inhibitory mechanisms in neuronal processing of the healthy

brain as well as GABAAR-related disorders and could enable site-directed

drug design for such disorders.
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