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Abstract 
The brain has a remarkable, yet poorly understood, capacity to perform rapid dynamic 

switching between different cognitive states. Absence epilepsy, characterized by sudden 

transitions to and from highly synchronous thalamocortical oscillations, provides a 

unique window to investigate rapid state switching. Here we explored the transition into 

seizures in detail using simultaneous extracellular unit recordings from the 

thalamocortical circuit in the Scn8a mouse, a validated murine model of absence 

epilepsy. We find that trial-averaged neural firing in the thalamus, but not cortex, was 

transiently elevated several seconds prior to seizure onset. However, we observed large 

single-trial variability in pre-ictal dynamics both within and across subjects, suggesting 

possible heterogeneous transition dynamics into absence seizures. To quantify the 

single-trial amplitude and temporal variability, we developed a statistical model, which 

revealed that individual seizures are preceded by low dimensional neural dynamics that 

vary in amplitude and time across seizures. Interestingly, the single-trial pre-seizure 

amplitude modulation uncovered by the model showed strong periodicity over trials, 

suggesting that pre-ictal dynamics may co-modulate with arousal state. To our 

knowledge, our results are the first characterization of single-unit pre-ictal firing 

dynamics across the thalamocortical circuit in absence epilepsy. Our results argue that 

seizure-monitoring devices may be able to capitalize on seizure-by-seizure changes in 

pre-ictal activity to better predict seizure onset, and that the thalamus may be a source 

of clinically useful pre-ictal signatures.  
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Introduction 

Brain activity is characterized by ongoing neural dynamics and changes in state that 

alter such dynamics and govern behavior. State changes can be subtle, as exemplified 

by continuously variable changes in attentional state related to arousal1–4. Conversely, 

state changes can be distinct and sudden, such as the transition between sleep and 

wakefulness5,6. These neural states and their transitions can be directly monitored via 

electrophysiological recordings. For instance, slow-wave sleep is characterized by low 

amplitude/high frequency scalp electroencephalography (EEG) activity, while 

wakefulness is characterized by high amplitude/low frequency activity7,8. At the extreme 

limit of state changes are those occurring in neurological disorders such as epileptic 

seizures in which neural activity switches into a highly synchronized seizure state, which 

blocks normal information processing and can result in lapses of consciousness. 

 

An example of extreme epileptic state switching is Typical Absence Epilepsy, a 

childhood onset disease characterized by brief but frequent seizures occurring many 

times a day. Absence seizures are characterized by their stereotyped ictal (the period of 

time during the seizure) 3 Hz spike-and-wave discharges (SWD) detectable via 

electroencephalography (EEG) and electrocorticography (ECoG)9,10, as well as sudden 

loss of consciousness (absence)9,11. Studies in several validated animal models of 

absence epilepsy have led to a clear circuit framework for absence seizures, suggesting 

that absences likely initiate in sensory cortical regions and then rapidly generalize across 

the thalamocortical network. While the mechanisms underlying absence epilepsy are 

reasonably well characterized at the neuronal circuit level12–14, the neural dynamics 

underlying transitions into and out of seizures remain poorly understood. Current 

thinking in the field posits that absence seizures are stochastic events that display little-

to-no pre-ictal (pre-seizure) warning signs prior to their onset11,15. This is at odds with 
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other forms of epilepsy, which can display prolonged pre-ictal activity patterns that are 

distinct from non-pathological activity16–18. 

 

This dogma underlying the nature of absence seizure initiation is starting to change. For 

instance, pre-ictal increases in both high (20-40 Hz) and low (1-4 Hz) frequency cortical 

oscillations in the ECoG, derived via wavelet-decomposition19,20, have been reported in 

different rodent models of genetic absence epilepsy21–23. Along these lines, other studies 

have corroborated these wavelet-based methods via non-linear analyses of single and 

multichannel EEG. Li and colleagues identified a reduction in permutation entropy – a 

measure of the complexity of a time series – in the EEG a few seconds prior to seizure 

onset, which perhaps points to a gradual increase in the synchronization of cortical 

and/or thalamic neurons24. In agreement with these results, Lüttjohann et al. showed an 

increase in coupling strength – a measure of cross-communication – between the 

Posterior nucleus of the thalamus (Po) and cortical layers 5/625,26. This suggests that the 

thalamocortical circuit may enter into a more coordinated state prior to seizure onset, 

perhaps due to direct reciprocal communication between these regions and/or inputs 

from other subcortical structures. These results are somewhat contradicted by a 

separate report indicating both increased and decreased pre-ictal synchronization 

across brain regions within the same subjects27, arguing that perhaps these pre-ictal 

periods may be dependent on ongoing brain states such as arousal levels. 

 

Despite these recent advancements, our understanding of the neural mechanisms 

underlying pre-ictal changes remains limited due to the poor spatio-temporal resolution 

of EEG and LFP signals. It is unclear if pre-ictal activity is localized to cortical or 

subcortical (i.e. thalamic) populations of neurons, and whether or not pre-ictal changes 

in activity are stereotyped across seizures. This type of information is crucial for detailing 
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mechanisms by which the thalamocortical circuit can enter into such a hyper-

synchronous regime, which may also provide insights into the general processes of 

cognitive state-switching5,28–31. For instance, in vivo and ex vivo simultaneous 

intracellular recordings of thalamic and cortical neurons have highlighted changes in 

thalamocortical synchronization as a basis for various oscillations such as sleep 

spindles8,32,33. 

 

In addition, single-neuron recordings of the thalamocortical circuit may reveal new 

targets for therapeutic intervention. As an example, a discovered role of thalamocortical 

(TC) and reticular thalamic (RT) synchronization via T-type calcium channels in the 

initiation and maintenance of absence seizures is a result of productive integration of 

detailed modeling and electrophysiology studies12,34–37. This is consistent with the 

efficacy of established and next generation T-channel blockers as treatments for 

absence seizures12,38–40. As computational modeling and experimental technologies such 

as closed-loop deep brain stimulation (DBS)41–43 continue to improve, clinicians may be 

able to incorporate the detection of pre-ictal dynamics to more precisely target the 

seizure-genesis regions of the brain and improve the efficacy of seizure-modifying 

stimulations. 

   

Large-scale multi-site neurophysiological recordings with single-cell resolution may 

provide a crucial link between detailed single-cell physiology and network-level EEG/LFP 

recordings. Fortunately, recent advancements to large-scale single-neuron recording 

hardware and software44–48 have greatly facilitated the ability to acquire and interpret 

such data. Systems-neuroscience approaches have uncovered behaviorally relevant 

dynamics within various brain circuits responsible for motor preparation and execution49–

51, locomotion52,53, and decision making54.  Action potential firing from hundreds of 
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neurons is now reliably obtained with multi-electrode arrays positioned in multiple brain 

regions. These studies commonly utilize matrix decomposition techniques to digest high-

dimensional neural data (action potential times from multiple neural "units") and extract 

low-dimensional representations of the population activity (often termed “latent” or 

“hidden” population dynamics)55–58. These population dynamics capture much of the 

variability observed in the raw data in a much more compressed form, while 

simultaneously providing an interpretable representation of how the neural activity 

evolves in response to external or internal cues. This type of analysis may be the critical 

tool needed to dissect otherwise hidden pre-ictal thalamocortical neural dynamics in 

absence (and other) epilepsy models. 

 

As such, to address current gaps in our understanding of absence seizure dynamics, we 

used silicon probes with many contact sites to record multiple individual neurons 

simultaneously from both the cortex and thalamus in awake, behaving rodents with 

genetic absence epilepsy. We used the Scn8a+/- mouse absence model59, which has a 

loss-of-function mutation in NaV1.6 resulting in impaired intra-RT inhibition, and thus an 

increased susceptibility to thalamocortical synchronization14. We focused on three 

primary questions in this study: (1) what are the thalamocortical dynamics that evolve 

during the transition into absence seizures, if any? (2) Are these dynamics stereotyped, 

or can they vary on a per-seizure basis? (3) Do the transition dynamics encompass 

multiple brain regions, or are they restricted to specific nuclei? To our knowledge, this 

work is the first attempt to record individual neurons from the thalamocortical circuit at 

this scale and characterize pre-ictal population neural dynamics in absence epilepsy. 
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Methods 

Experimental procedures 

We performed all experiments according to protocols approved by the Institutional 

Animal Care and Use Committee. We took precautions to minimize animal stress, and 

limited the number of animals used in our experiments to the minimum necessary.  

 
Electrode preparation 

We used electrodes designed by the Masmanidis lab44. In particular, we used the 64E 

configuration (64 10x10 μm contacts, linearly spanning 3.15 mm with 50 μm inter-

contact spacing) to simultaneously record thalamic and cortical neurons. Prior to 

implantation, electrode contacts were electroplated to ~ 250 kΩ using gold plating 

solution (Sifco Processes) and an Intan electroplating board 

(http://intantech.com/RHD2000_electroplating_board.html). Electrode contacts with 

impedances less than 100 kΩ or greater than 500 kΩ were noted and left out of further 

analysis. For ground/reference, an insulated wire was soldered to the reference position 

of our recording headstage, and the free end of the wire was soldered to a small gold pin 

for subsequent attachment to animal ground. 

 

Implantation  

We used male and female Scn8a+/- mice of age between P60-90. All electrodes were 

doused in 70% ethanol and allowed to dry prior to implantation. Mice were anesthetized 

via isofluorane inhalation (3.5% initial, lowered to 1.5% during the surgery), and secured 

in a stereotaxic frame for accurate probe implantation. Carprofen was administered once 

the mice were anesthetized in order to suppress inflammation around the implanted 

electrode, and Buprenorphine-SR was administered post-surgery to reduce post-

operative pain. A surgical drill was used to create a small burr hole for the probe over the 
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right somatosensory cortex (1.8mm Posterior, 2.5-2.6mm Lateral). To span both S1 

cortex and higher-order somatosensory thalamus, which shows involvement in seizure 

initiation26, silicon probes were angled at roughly 66 degrees relative to the horizontal 

axis and lowered approximately 3.2 mm (Figure 1A; Figure S1) at a constant, slow rate 

(approximately 1.5mm / min). In addition, a ground electrode composed of a 

corresponding female-pin attached to one end of a thin (0.05 mm) insulated stainless 

steel wire, and a miniature self-tapping screw (Precision Screws, part #: FF00CE125) 

attached to the other end, was implanted into the skull above the cerebellum. An anchor 

screw was also implanted above contralateral S1 cortex. After all residual bleeding had 

ceased, the implant was sealed using dental cement, and the back of the probe was 

fortified with dental cement to stabilize the probe shaft in the brain. Each animal was 

then placed in a clean, warmed cage and allowed to recover before being returning to its 

home cage. Mice were given 5 days to recover from the surgery, and carprofen was 

administered subcutaneously once a day for three days following the surgery. 
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Figure S1: Histological verification of recording sites. 

Bright field images illustrating the implantation site in 6 mice, and a histogram of units identified 
in the various brain regions spanned by the electrode. Although there is some jitter in the 
placements of the electrodes, they all span through sensory cortex and PO/LP thalamus. 
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Recordings 

The silicon probes were interfaced with an Intan 128-channel digital headstage 

(http://intantech.com/RHD2000_128_channel_amp_board.html) specifically designed to 

connect to these probes. Recordings were performed via OpenEphys hardware and 

software45 on a dedicated PC with 16 GB RAM and a 4-core Intel i5 3.2GHz processor. 

The streaming data was bandpass filtered using a Butterworth filter (1 - 7500 Hz) and 

sampled at 30 kHz. Multiple consecutive 10-15 minute blocks were recorded for each 

animal to avoid excessively large files, which were processed offline. Recordings were 

performed in a clean, transparent glass cage in a quiet room with ambient lighting during 

the hours of 9 AM – 5 PM starting 4 days post-implantation. The recording cage was 

thoroughly cleaned with ethanol and allowed to air dry whenever mice from a new cage 

were to be recorded. Mice were housed on a regular light-dark cycle. 

 

Data processing and analysis 

All data analysis was performed using custom MATLAB and Python software. As our 

analyses focused on the pre-ictal period of each absence seizure, we performed a two-

stage analysis: automatic detection and alignment of seizures, followed by extraction of 

pre-ictal spiking activity from individual units. To facilitate data organization and rapid 

visualization and compilation of different trials and neurons, we built a hierarchical 

relational data storage system in the MATLAB language (see 

https://github.com/Jorsorokin/neo-matlab for details), which we used for preprocessing, 

compilation, and storage.  

 

All statistics and analyses were performed using the Python language (v 3.4.7). We set 

our significance level to 0.05 and corrected for multiple comparisons using Tukey’s HSD 
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(ANOVA) or Bonferroni (t-test, Levene’s test, KS-test). To estimate firing rates, we 

binned raw spike counts into 10 ms bins and applied a 100ms smoothing Gaussian filter. 

We discarded multi-unit spikes (those unable to be assigned to particular neuron) for our 

unit-based analyses. We also discarded seizures overlapping with the pre-ictal window 

of the subsequent seizure to avoid contamination of pre- and post- ictal neural dynamics. 

 

Seizure detection 

To detect seizures, we selected a single cortical channel with prominent seizures and 

few artifacts, down-sampled the LFP to 500 Hz, and then used the discrete wavelet 

transform (DWT) with a Symelet-4 mother wavelet to extract a multi-level time-varying 

frequency representation of the signal21. We expanded upon our previous seizure 

detection algorithm, which relied on summing specific wavelet bands and thresholding 

the result21, by training a logistic regression classifier on relative wavelet variances 

derived from 250 ms segments of LFP (with 125 ms of overlap) that either did or did not 

contain an SWD envelope (1 or 0 class label, respectively; Figure S2 A-B). This allowed 

the classifier to find the appropriate weights for the various frequencies of the wavelet-

transformed data, rather than having the user pre-specify such weights a priori (Figure 

S2 C-D). In addition, the classifier produces a probability vector for each seizure (Figure 

S2 B), which was used as a proxy to measure how stereotypical a particular detected 

seizure was relative to training data and facilitated with the removal of false-positives.  
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Figure S2: Automatic seizure detection via DWT-based logistic regression 

A) Squared coefficients from a discrete wavelet transform (DWT) (top) of one cortical LFP 
channel (bottom). Red bar indicates the identified seizure. 

B) Wavelet coefficients + a histogram of relative wavelet variance for each sub-band (top), 
cortical LFP + histogram of voltage (middle), and a time series of SWD probability + a histogram 
of marginal probabilities (bottom). The dashed line indicates P(SWD) threshold. Green bars 
indicate regions where the probability surpasses the threshold, while red bars indicate regions that 
are considered part of the seizure.  

C) Logistic regression coefficients for the relative variances of the wavelet sub-bands. High 
frequency activity (>= 96 Hz) is inversely correlated with P(SWD), while 24-48 Hz bands are 
positively correlated. 

D) Partial dependence plots for the different wavelet sub-bands after holding all other values 
corresponding to P(SWD) = 0 (blue), P(SWD) = 0.5 (black), and P(SWD) = 1 (red). Each curve 
depicts the sigmoidal relationship between a particular wavelet sub-band the probability of a 
particular event being classified as an SWD. 

 

Spike detection and sorting 

Spikes (action potentials) were detected and sorted using custom software inspired by 

various available spike-sorting packages47,60. Briefly, spikes were detected with a two-

stage local threshold method that identifies spatio-temporally connected regions in a 
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multi-channel recording (Figure S3 A), resulting in 1.5 ms of data for each channel for 

each spike (Figure S3 B, left). In addition, because each neuron’s detected spikes are 

physically isolated in space along the electrode, channel-wise masking weights for each 

action potential according to the amplitude of the action potential voltage on each 

channel60 (Figure S3 B, right). This produces a masking matrix M for all detected spikes 

in a recording, which weights channels on a per-spike basis when computing features for 

clustering and improves cluster separation60 (Figure S3 C, right). Without masking, 

background noise and/or non-aligned spikes from other neurons can dominate the 

feature space and produce clusters with large overlap (Figure S3 C, left). Our feature 

vectors for the detected spikes were computed by projecting each spike waveform onto 

the first 3 principal components computed for each channel separately, resulting in a 

192-dimensional (3 PCs x 64 channels) vector for each spike. 

 

Clustering was performed using a hierarchical density-based clustering algorithm 

(HDBSCAN)61,62, which we implemented using the MATLAB language 

(https://github.com/Jorsorokin/HDBSCAN). Initial clustering was performed on a small 

subset of detected spikes taken from the first recording file of each animal. Then, each 

recording was processed in parallel in small (10 s) segments that were sorted using a 

template-matching algorithm similar to existing spike sorting software63 (Figure S3 D). 

Non-sortable spikes were then automatically re-clustered via HDBSCAN, and putative 

new template waveforms were discarded if they had a high (0.95) correlation with any of 

the existing template waveforms. Finally, templates were updated using an exponential-

weighted moving average (� � 0.25) over sequential segments of data to account for 

drift over recordings64 (Figure S3 B).    
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Following automated clustering, we manually curated the putative clusters by removing 

clusters with fewer than 50 detected spikes, and those with non-biological waveforms 

such as those with no clear peak/trough. We then split clusters with bi-modal 

distributions in the amplitudes of the assigned spikes, and merged clusters that 

displayed high correlations (>= 0.9) in their mean waveforms and a clear drop in their 

spike-time cross-correlograms within +/- 1 ms lag. We chose to develop our own 

software to (a) integrate with our data storage package mentioned above, (b) allow for 

more flexibility in the desired projections (i.e. tSNE, ICA, …), (c) allow for flexibility in 

clustering algorithms, and (d) facilitate automated re-sorting of a subset of clusters. For 

details, please see https://github.com/Jorsorokin/neo-matlab. 

 

Figure S3: Semi-supervised spike sorting methodology 

A) Raw (left) and high-passed (right) neural activity from a subset of electrodes. Note that 
individual neural spiking is not detected on every channel.  

B) Left: Template waveforms for four putative neurons (rows) across multiple channels. Putative 
neurons are sparse over space and show changes in their spatio-temporal template waveforms 
over recording sessions. Right: A masking matrix for the four units highlights the sparsity over 
electrodes and helps separate putative neurons from one another.  
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C) Projections of spike waveforms from the four putative neurons in B onto the first 3 PCs before 
(left) and after (right) masking uninformative channels.  

D) Left: A similarity score of all spike waveforms in C with each of the four template waveforms 
in B. Each row represents one spike waveform and each column one template waveform. Note 
that although there is some heterogeneity in the absolute scores, each spike shows a sparse 
similarity profile over the four templates. Right: individual spikes (grey) assigned to a particular 
template waveform (black). 

 

Principal Components Analysis 

We subtracted the mean firing rate from each neuron for each seizure, concatenated 

trials together, and applied PCA to the full trial-concatenated dataset for each animal. 

This allowed us to obtain trial-averaged PCs by re-shaping projected data back into a 

tensor and averaging over trials, while also obtaining single-trial PCs. We removed the 

mean from each trial prior to concatenating because we were interested in capturing 

within-trial dynamics, not differences in mean firing rates between trials. For channel-

based analysis, we simply repeated the above procedure but used channels as 

“neurons”, where each neuron was assigned to the channel that showed the largest 

voltage impulse of that particular neuron’s mean waveform65. Thus, our rate tensors had 

64 dimensions for each trial; see (https://github.com/Jorsorokin/cpwarp). 

 

To compare neural dynamics across animals, we z-scored the trial-averaged projections 

(see Figure 2) so that we could better characterize within-trail pre-seizure changes in 

activity. When analyzing the weights for the neurons across animals (Figure 2C), we 

computed the mean score for each region (cortex, hippocampus, and thalamus) for each 

animal, then pooled the results together and applied a 1-way ANOVA to assess 

statistical differences between these regions. 

 

Time-warped Tensor Decomposition 
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We built on existing tensor-decomposition and time-warp models by developing a 

method that seeks to find a low-dimensional representation of neural dynamics over time 

and trials, which simultaneously allows for variable temporal warping of the dynamics 

across trials. The result is a mixture of the well studied canonical polyadic decomposition 

(CPD) (also known as tensor-components analysis or TCA), a method designed to 

represent high-dimensional data tensors as a summation of low-dimensional factors55, 

and time-warping, designed to allow for temporal warping of neural activity across trials 

to uncover meaningful neural representations and reduce noise introduced by temporal 

jitter.66 Our motivation for combining these models was two fold: to improve the 

robustness of TCA to temporal jitter, and also to formulate a unified statistical model to 

identify trial-specific amplitude and temporal modulation of neural activity, both of which 

have been shown to emerge in real neural recordings.55,66 We point the interested reader 

to our manuscript describing the method in more detail67. 

 

Given the number of degrees of freedom of this combined model, we constrained the 

time-warping component of the model to affine-shifts only, as we found non-linear 

warping is prone to over-fitting to noise. We also restricted the maximum absolute shifts 

to 20% of the pre-ictal window (1.6 s total). To avoid contaminating pre-ictal dynamics 

with activity during seizure onset in both the low-rank factor estimation and temporal 

warping, we excluded the last 500 ms of pre-ictal data during model fitting. We reasoned 

that the limited spatial sampling of our linear probes provided imprecise timing of exact 

seizure onset, and thus by excluding the last 500 ms of pre-ictal activity we reduced the 

contamination of ictal neural dynamics.  
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Results 

Changes in thalamic, but not cortical, activity during the pre-ictal period 

To first assess whether there were any detectable changes in thalamocortical activity 

during the pre-ictal period of absence seizures, we analyzed the average firing rates of 

cortical, hippocampal (the linear probes spanned through the hippocampus), and 

thalamic neural populations during the pre-ictal period across seizures (Figure 1A-C). 

Interestingly, in the seconds before each seizure, the thalamus displayed a gradual 

increase in firing rate followed by a more abrupt reduction in firing rate (Figure 1D-E). In 

contrast, neither the cortex nor the hippocampus showed much of a change.  

 

To assess the robustness of this result, we normalized neural activity to the mean 

activity 5 seconds prior to seizure onset for each animal (to account for variable baseline 

rates between animals), then averaged the normalized rates across animals (Figure 1D). 

The thalamus displayed a statistically significant increase in pre-ictal firing (-3 to -0.5 

seconds relative to seizure onset) compared to non-ictal (-5 to -3 seconds) activity 

(Figure 1E, KS test, p < 0.05). Note the pre-ictal period is defined as the period 3 

seconds or less before seizure onset, consistent with previous work21. We did not 

observe this effect in the hippocampus, nor did we observe much change in cortical 

activity during the pre-ictal period – a surprising result given that the cortex and thalamus 

are strongly mutually connected68–70 and display synchronized discharges during the 

seizures themselves37,43,71. 

 

Having identified a change in average thalamic activity prior to onset, we investigated 

whether or not the average was dominated by a small subset of thalamic neurons with 

high firing rates. To assess this, we randomly partitioned our set of thalamic neurons into 
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two groups, and used linear regression to predict the activity of one half using varying 

proportions of the other half (ranging from 100% to 4%). We then repeated this 

procedure many times and averaged the R2 values for each fraction, resulting in a 

prediction curve for each animal, which we then pooled together (Figure 1F). We were 

able to predict the firing rates of one half of the units with only 12% in the fraction of units 

kept in the other half (repeated measures 1-way ANOVA; p < 0.001; F = 79.11; n = 7 

animals). Further, the maximum R2 value was near 0.8, indicating that thalamic units 

indeed follow highly correlated dynamics during the pre-ictal period. More concretely, as 

we recorded between 30-50 thalamic neurons per animal (Figure S3), we were able to 

reasonably predict the activity of half of the thalamic neurons using as few as 5-8 other 

thalamic neurons. These results argue that one need not identify a large number of 

thalamic neurons to uncover such pre-ictal activity, and that pre-ictal dynamics likely only 

explore a small number of dimensions in the space of multi-neuronal firing patterns.   

 

Figure 1: Thalamic activity transiently increases during the pre-ictal period 

A) Top: cartoon depicting experimental recording setup; a single shank 64-channel silicon probe 
was implanted along the somatosensory cortico-thalamic axis for simultaneous recordings of 
cortical and thalamic neurons. Bottom: bright field images illustrating the electrode scar (arrows).  

B) LFP from one cortical (blue), hippocampal (orange), and thalamic (purple) electrode during 
one seizure. For our analyses, we only focused on the pre-ictal period (un-shaded region).  
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C) Top: A recording of high-pass spike data from three cortical (top), hippocampal (middle), and 
thalamic (bottom) electrodes. The dots indicate sorted units, and the colored dots correspond to 
the three example units shown below. Bottom: mean waveforms and projections of the waveforms 
via PCA for three example units. Mean waveforms for each channel are illustrated on the right.   

D) Average pre-ictal firing rates in each of the three brain regions for two animals. Red bar 
indicates seizure onset, error = +/- SD over trials. 

E) Average firing rates for the three regions across animals; error = +/- SD over animals. Note the 
ramp and drop in the thalamus.  

F) Box plots of the R2 value obtained by linearly regressing the average activity of one half of the 
neurons with the average activity of some fraction of the other half. Here we see neurons are very 
correlated, as the R2 value remains high even with only 25% of the other half.  

 

Average pre-ictal dynamics are well captured by few principal components  

The above results suggest that pre-ictal signatures reside in the thalamus, but are not 

reflected in the cortex. However, one simple counter explanation is that a subset of 

cortical neurons may exhibit heterogeneous changes in activity patterns across the 

population during the pre-ictal period resulting in a flat firing rate when averaged 

together. Thus to gain a finer scale description of the pre-ictal activity in the cortex and 

thalamus, we used principal components analysis (PCA) to obtain a low-dimensional 

representation of the neural firing patterns72. As a motivating example, if pre-ictal cortical 

dynamics are roughly similar in absolute magnitude and timing despite some cortical 

neurons showing differential activity patterns relative to others, then PCA can still 

uncover the underlying dynamics of the population by assigning negative weights to 

some cortical neurons and positive weights to others. 

 

We first applied PCA to trial-averaged data using all recorded neurons (pooled across 

cortex, thalamus, and hippocampus) for each animal. Projections of neural activity onto 

the first three principal components (PCs) explained 39.31 +/- 11.68% of the total 

variance and showed similar pre-ictal patterns across animals: a sudden increase in 

neural activity roughly 2-3 seconds prior to onset that lasted for 1-2 seconds (PC 1), and 
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more gradually changing activity throughout the entire pre-ictal period (PC 2 & 3; Figure 

2 A-B, Figure S4 A-C, right). 

 

Figure 2: Low-dimensional pre-ictal ramping is primarily localized to the thalamus 

A) Average neural projections onto each of the first three components identified via PCA. Gray 
lines = individual animals, black line = average. Here we z-scored the projections to compare 
within-trial temporal dynamics rather than scaling differences across animals. 

B) Box plots of binned average neural projections onto each of the first three PCs. Only PC 1 
shows a significant transient increase roughly 2 seconds prior to onset. N = 7 animals; p < 0.001; 
repeated measures ANOVA. 

C) Histograms of neuron PC weights separated by region for all animals. Inset: box plots of 
average weights for each region; the thalamus shows statistically higher weights for PC 1, but not 
for PC 2-3. N = 7 animals; p < 0.001; 1-way ANOVA 

D) Trial-averaged 3D projections of the neural activity onto the first three PCs for two animals; 
color is indicated by time. We see the neural activity migrates away from the “baseline” region 
primarily along PC 1.  

E) Trial-averaged 3D projections of neural activity projected onto PCs from cortical (top) and 
thalamic (bottom) populations separately. Here cortical projections do not show much pre-ictal 
change, while thalamic-only projections recapitulate the projections in D. 

F) Projections of activity onto the first two principal components derived from channel-sorted 
data. The projections display very similar dynamics to those obtained via single-unit data 



 20

 

To quantify the absolute change in the trial-averaged components, we standardized 

projections for the first 3 components by their variances and binned them into 0.5-

second bins ranging from -7.5 to -0.5 seconds relative to seizure onset. We then 

averaged the activity across trials and applied a one-way repeated-measures ANOVA 

for each of the projections for the first three PCs across our animals (Figure 2C). 

Projections from PC 1 displayed a significant departure from baseline between -2.5 and -

1 seconds, while projections from PCs 2 and 3 did not, although PC 2 displayed a 

downward trend (PC 1: p < 0.001, F = 6.81; n = 7 animals). 

 

In addition, we compared the weights assigned to the population of recorded neurons 

and found thalamic weights for PC 1 were significantly higher compared to cortical or 

hippocampal weights (1-way ANOVA; F = 42.51; P < 0.001). By contrast, the three 

populations had similar weights for PCs 2 and 3 (Figure 2C; Figure S4 A-C). This argues 

that thalamic firing patterns are the primary contributors to PC1 – that is, that thalamic 

neurons show large increases in activity prior to seizure onset compared to cortical or 

hippocampal neurons.   

 

Visualizing the first three components together as a three-dimensional representation of 

population activity – e.g. the “neural state” – revealed a migration of the activity during 

the last 2-3 seconds of the pre-ictal window primarily along the axis spanned by PC 1 

(Figure 2D). To determine whether this migration was also evident in the cortex, we 

applied PCA to cortical and thalamic populations separately. We found that the thalamic 

neural state continued to show pre-ictal migration, while the cortical neural state showed 

a much smaller change (Figure 2E). To determine whether jitter in activity due to 

potentially poor spike sorting had compromised these results, we repeated this analysis 
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using channel-sorted data rather than single-neuron sorted data (see methods). Indeed 

such channel-based sorting has been shown in some cases such as monkey motor 

planning to adequately recapitulate low-dimensional neural trajectories during motor 

tasks obtained from single-unit data65. We found nearly identical results using channel-

based data: PC1 showed a robust increase in activity prior to seizure onset and was 

associated with large weights for thalamic channels compared to cortical or hippocampal 

channels (Figure 2F, Figure S4 D-F).  

 

Interestingly, the first three PCs computed via channel-based sorting captured similar 

variance compared to unit-based data (45.49 +/- 11.04%) and displayed highly similar 

pre-ictal dynamics (Figure 2F). We hypothesize this is likely due to a reduction of single-

neuron jitter and a smoothing of the estimated firing rates via pooling. Importantly, these 

results suggest it may be possible to realize thalamocortical pre-ictal dynamics in real-

time without the computationally demanding process of spike sorting. 

 

In combination with our previous study21, these results verify a robust change in neural 

dynamics a few seconds prior to absence seizure onset, which can be observed through 

multiple spatio-temporal scales (EEG21 and single-neuron activity). Further, these results 

suggest that a pre-ictal peak (PiP) in neural activity seems to be a low-dimensional 

feature of thalamic multi-neuronal dynamics. 
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Figure S4: Pre-ictal dynamics are identifiable via channel-based sorting 

A-C) Left: Scree-plots of the variance explained over 30 principal components applied to single-
unit data for three different animals (indicated by the animal tags above the plots). We see the 
first component captures a great deal of variance compared to the remaining components. Right: 
principal component weight matrices for the first 3 PCs. Each row indicates one neuron, and each 
column (separated by dashed lines) indicates one PC. The projections of the neural activity onto 
each of the 3 PCs are displayed above. The colored bars on the left indicate brain regions (refer to 
Figure 4.1). Notice that thalamic neurons display large weights for PC 1, while weights for PCs 2 
and 3 are more variable across animals.  

D-F) Same as A-C but applied to channel-based sorting. Here each row indicates one electrode 
from the silicon probe, and all spikes assigned to that electrode are considered a putative multi-
unit “neuron” for this analysis. Notice the similarities in the weight matrices and scree plots as in 
A-C.  

 

Thalamic neurons display heterogeneous pre-ictal firing patterns across trials 

Having identified a robust change in trial-averaged pre-ictal thalamic activity, we next 

investigated whether pre-ictal dynamics showed heterogeneity across trials. Our 

motivation for analyzing single trials stems from behavioral neuroscience, from which 
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evidence has emerged that information carried by single-trial variability in neural activity 

provides predictive information about behavior, which can be lost when analyzing trial-

averaged activity73–77. We observed surprising variability in pre-ictal thalamic spike 

patterns (Figure 3A-B) as well as in projections of single-trial thalamic activity onto trial-

averaged principal components, which showed variable pre-ictal migration onset times 

and directions (Figure 3C). 

 

Despite these observations, it remained unclear whether these differences were due to 

meaningless noise or represented real differences in the resultant seizures. For 

instance, pre-ictal variability may relate to natural variations in the seizures themselves, 

and may be useful in better assessing the “strength” of an impending seizure in a 

closed-loop approach. 

 

Figure 3: Individual seizures show highly variable pre-ictal neural activity 
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A) Raster plots of one thalamic channel for three different animals (m1 – m3) over all detected 
seizures (rows). Despite having observed the transient increase in PC 1 from Figure 4.2, thalamic 
neurons show large variability in pre-ictal firing patterns. 

B) Fan plots for projections onto PC 1 for the three animals indicated above. Red line = average 
over trials, while contour lines indicate densities across trials. Notice the “fanning out” of the 
contours at roughly 2 seconds prior to onset, suggesting an increase in variance during this period 
of time across trials. 

C) Single-trial projections of neural activity onto the first two PCs. Colored bars correspond to 
trials highlighted in A, while rows correspond to animals. Here migrations during the pre-ictal 
period are evident but occur at different time points (indicated by color). 

D) Cartoon depicting possible scenarios of single-trial neural activity leading to the dynamics 
discovered via PCA. Top: distinct dynamics. Individual seizures may show single, distinct neural 
dynamics that vary on a per-seizure basis. Middle: mixture of dynamics. Individual seizures may 
also show a mixture of neural dynamics, with amplitudes that vary on a per-seizure basis. Bottom: 
temporal shifts. Alternatively individual seizures may actually show simple and consistent neural 
dynamics that are temporally jittered prior to each seizure. Any of these situations can lead to the 
dynamics above. 

 

Pre-ictal dynamics show amplitude and temporal heterogeneity 

Our results obtained via PCA suggest that thalamic neurons undergo a highly correlated 

change in activity during the pre-ictal period, which seems to vary across seizures. 

There are multiple scenarios that might explain these observations. One possibility is 

that single trial dynamics cluster into distinct subtypes across seizures, but otherwise 

show little within group variability (Figure 3D, top). Another possibility is that neural 

activity shows a continuum of temporal variability across seizures, perhaps due to 

differences in seizure onset zones or propagation speed, as has been previously 

reported78 (Figure 3D, middle). A third scenario is that pre-ictal dynamics are largely 

similar across trials but show amplitude modulation, such that neural activity shows a 

smaller increase (or even a decrease) in activity prior to some seizures (Figure 3D, 

bottom). Finally, there may be a mixture of these different scenarios: neural dynamics 

may vary both in time and amplitude, and may cluster into subtypes. 
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Unfortunately, PCA is limited in its ability to describe such single-trial heterogeneity. 

Concretely, PCA cannot tell us how strongly each underlying activity pattern is 

represented on a trial-by-trial basis, nor can it supply information about possible 

temporal jitter on a per-seizure basis. In fact, these trial-by-trial differences may partially 

account for the low variance explained by the first few principal components computed 

using trial-averaged data (Fig 2). That is, pre-seizure neural activity may appear to 

unfold along a higher-dimensional manifold simply due to noise introduced by temporal 

or amplitude jitter. 

 

To address the limitations of PCA and investigate seizure-by-seizure changes in pre-ictal 

neural dynamics in more detail, we developed a statistical model that seeks to represent 

neural activity as a sum of a few low dimensional factors with possible amplitude and 

temporal modulation across trials – here termed time-warped tensor components 

analysis (twTCA). This model builds on previous work by combining tensor-components 

analysis (TCA)55 and time-warping66 to represent the original pre-ictal neuron x time x 

seizure data tensor as a sum of a fewer number of factors. These factors encapsulate 

population dynamics (analogous to PCA), but also describe possible amplitude 

modulations and temporal shifts across pre-ictal periods. This better represents single-

trial variability, while providing inter-trial dynamics in a compact and interpretable way. 

This model trades neuronal firing template flexibility (where time-warping models allow 

for maximum flexibility) for amplitude estimation and multi-template shifting. We point the 

interested reader to our methods for details. 

 

Given the larger degrees of freedom in the twTCA model compared to trial-averaged 

PCA (thus increasing the possibility of over-fitting to noise), we first assessed whether 
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amplitude modulation alone was sufficient to capture the variability in pre-ictal dynamics 

across trials. To do so, we fit a rank-2 (two factors) TCA model with no temporal shifts.  

We found that reconstructed firing rates from the model did not reliably capture much of 

the variance observed in the actual firing rates, but instead produced a temporally 

smeared approximation to the actual data (Figure 6A). This argues that pre-ictal neural 

dynamics display heterogeneous activity across seizures beyond amplitude modulation. 

 

To address this hypothesis and motivate the use of twTCA, we simply sorted trials for 

each animal based on peak average activity using ½ of all recorded neurons (Figure 4A, 

top), and then applied the sorting to the average firing activity from the remaining ½ of 

the neurons. The band of peak activity across trials was maintained (Figure 4A, bottom), 

which confirms that neurons do follow correlated dynamics that are time shifted across 

trials. If the band did not persist, then we could conclude that the perceived per-seizure 

time shift is an artifact detected from noisy spiking activity, and therefore that twTCA is 

likely to over fit the data. Given this result, we proceeded with a time-warp (TW) only 

model, which allows neural activity vary in time across trials, and found time-warping 

pre-ictal activity results in robust pre-ictal ramps that were strongly expressed in the 

thalaumus (Figure 4D-F). The warping was evident even in held-out neurons not used 

during model fitting (Figure 4B). Nonetheless, we found TW-only models failed to 

capture much of the variability in the raw data due to its inability to capture differences in 

amplitude (Figure 6A, middle column). 
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Figure 4: Pre-ictal dynamics display temporal warping over trials  

A) Top: averaged neural activity for each trial that have been sorted according to the time of peak 
firing (computed up to -2 second prior to onset). Each image corresponds to on animal, and only 
½ of all units for each animal were used for finding the peak. Botttom: averaged neural activity 
over the other ½ of the units, with trials sorted according to the order calculated from above. Here 
the band of peak firing is maintained, arguing that the timing variability of the pre-ictal increase 
is not just an artifact 

B) A shift-only time-warping model reveals the transient pre-ictal increase in activity even when 
applied to held-out neurons not used during model fitting. Left: raw raster plots for two units; red 
tick = seizure onset. Right: shifted raster plots; the red Gaussian highlights that seizure onset has 
now been unaligned due to the shifting. 

C) Shifts over time + shift histograms for two animals. Note the large spread of single-trial shifts 
in both animals, suggesting a continuum of pre-ictal shifts across seizures. 

D) PCA applied to the template neural firing patterns identified by the shift-only model reveals a 
sharp pre-ictal transient increase in firing in PC 1 (top), and large thalamic weights for PC 1 
(bottom). 

E) Variance explained for PCs 1-3 computed on raw and warped trial-averaged firing rates. PC 1 
shows a significant increase in variance explained after and suggests very low-dimensional pre-
ictal dynamics largely explain temporally aligned trials (N = 7 animals; dependent t-test; p < 
0.001). 

F) Trial-averaged firing rates for two animals before applying the shifts (left), and after (right). 
Note the sharpening of the thalamically-dominating pre-ictal peak after shifting. 
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Given this result, we proceeded to fit a constrained rank-1 twTCA model that only allows 

affine temporal shifts up to a maximum of 20% of the total pre-ictal window (here 1.6 

seconds). In the time-warp (TW) only model there is no constraint on neural 

dimensionality (each neuron receives its own temporal shift), but single-trial amplitude 

modulation is not estimated. In combination with TCA however, the twTCA model 

restricts time shifting to each identified temporal factor while simultaneously fitting 

amplitude modulation across trials. We chose these parameters (rank-1, 20% shift) as 

we found higher ranks and shift percentages only produced marginal improvements in 

reconstruction error (Figure 5). Specifically, some low-rank twTCA models with variable 

shift (10-40%) had lower error than those from high-rank 0%-shift TCA models, and 

model error approached a lower asymptote with increasing temporal shift percentage 

(Figure 5D). We thus chose to place stronger constraints on the model to reduce over-

fitting and improve interpretability. 

 

 

Figure 5: twTCA improves reconstruction error compared to TW alone  

A) Left: pre-ictal activity averaged across all neurons for two animals (top and bottom rows). 
Middle: reconstruction from a time-warp only model with 20% maximal shift. Right: 
reconstruction from a rank-1 twTCA model with 20% maximal shift. twTCA produces a much 
more realistic reconstruction due to its ability to modulate amplitude across trials. 
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B) Histogram of reconstruction errors across seizures from the TW-only model (gray) and the 
rank-1 twTCA model (blue). Note the leftward shift in the error from the twTCA model. 

C) Similarity scores between multiple twTCA model fits as a function of rank (colors) and 

maximum shift. Because twTCA (as well as TCA) is a non-deterministic model, individual 

runs can produce slightly different results. Similarity scores show a sharp drop with ranks > 

2, suggesting the dynamics are indeed low-rank. 

D) Reconstruction loss as a function of max-shift for different model ranks. The dotted lines 

represent the loss with the maximum temporal shift allowed (40%). Note that loss from a 

rank-1 model with 40% shift approaches that from a rank-2 with 0% shift, while a rank-2 

model with 20% shift approaches the loss of a rank-3 model with 0% shift. There is a larger 

gap between rank-1 and rank-2 models, but this gap decreases with higher-ranks. 

 

We found that twTCA reconstructed much more realistic population firing rates than TCA 

or TW alone (Figure 5A, B; Figure 6A), and recovered the band of pre-ictal peak 

latencies when sorting trials based on temporal shifts identified by the model (Figure 

6B). Moreover, twTCA resulted in much more realistic firing rates compared to a 0-shift 

model of the same rank (figure S6), and some low-rank twTCA models with variable shift 

(10-40%) had lower error than those from high-rank 0%-shift TCA models (Figure 5D). 

Similarly, we found that twTCA better reconstructed neural activity (quantified via 

residual norm) than a time-warp model alone due to its ability to modulate the amplitude 

of the temporal factors across trials (Figure S7). 
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Figure S6: single-trial variability is better captured via twTCA compared to TCA alone 

A) Model reconstructions fit to the firing rates from one mouse. The model rank (rows) and shift 
% (columns) were varied and compared. Note that models with 0% shift show overly smoothed 
dynamics, while those with just 10% shift recover much of the single-trial heterogeneity. 
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Figure S7: twTCA better reconstructs single-trial firing patterns than TW alone 

A) Single-trial firing rates, averaged across all neurons. Each plot is one animal.  

B) Reconstructed single-trial firing rates (top) and histogram of reconstruction error across all 
trials (bottom) from a shift-only model. 

C) Same as B, but for a rank-1 twTCA model. Despite constraining all neural activity to follow 
the same dynamical pattern, twTCA performs better than the equivalent shift-only model due to 
trial-specific gain modulation of the neural activity.  

 

PiPs show rhythmic fluctuations in intensity over time 

To our surprise, per-trial amplitude gain, and to a lesser extent per-trial shift, showed a 

periodic auto-correlation with peaks above chance level (Figure 6C, see methods). This 
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phenomenon was also evident in a later recording session for some animals (not 

shown). However, these oscillations were not as apparent in the autocorrelations of 

seizure duration or inter-seizure interval (Figure 6D), suggesting that gain and shift are 

not correlated with these aspects of the seizures.  

 

The period of the oscillations varied between 10-20 seizures across animals; as each 

mouse experienced between 5-15 seizures per recording session, the amplitude and 

shift periodicity corresponds to tens of minutes. This was surprising to discover, as the 

twTCA model does not explicitly search for any periodic structure. Nonetheless, here we 

have discovered a phenomenon in which a very long (minutes to tens of minutes) 

timescale process affects the rapid (seconds) neural dynamics of seizure onset, which 

implies that the periodic fluctuations in pre-ictal activity may be used to improve long-

term prediction of seizure onset. 

 

 

Figure 6: Time-shifted tensor decomposition captures pre-ictal dynamics and reveals 
oscillations in the gain of the dynamics over seizures 



 33

A) Averaged neural activity for one animal (top left), and reconstructions of the neural activity 
from a rank-2 TCA model (top right), shift-only time-warping model (bottom left), and rank-1 
time-shifted tensor decomposition model (bottom right). Despite being lower rank, the dual 
shifted tensor model better reconstructs neural firing rates than the rank-2 TCA model alone, and 
also improves reconstruction than the time-shift only model. 

B) Top: averaged firing rates across neurons, with the discovered temporal factor (top trace) and 
from the rank-1 twTCA model. Bottom: the same data now with trials resorted according to their 
shifts identified by the model. 

C) Auto-correlations of pre-ictal gains (top) and pre-ictal shifts (middle). Note the strong 
periodicity in the auto-correlations, suggesting both gain and shift may be co-modulated by some 
behavioral process such as arousal. 

D) Same as C but for seizure duration and inter-seizure interval. Here oscillations are less 
apparent, suggesting that the rhythmicity found in C may be independent of the seizures 
themselves.   

 

Discussion 

In this study, we used rodent models of absence epilepsy to investigate whether or not 

the thalamus and cortex display pre-seizure activity that can be observed via time-

varying neural dynamics. We used multi-electrode silicon probes44 to record neural 

activity simultaneously from somatosensory cortex and higher-order somatosensory 

thalamus (Figure S1) in the Scn8a+/- rodent model of absence epilepsy14. We discovered 

that neural population activity showed a stereotyped pre-ictal peak (PiP) roughly 2-3 

seconds prior to seizure onset, which could be observed via trial-averaged firing rates 

(Figure 1D-E) and projections of trial-averaged activity via PCA (Figure 2A, left). 

Interestingly, the PiP appeared localized to the thalamus (Figure 2C, left), while other 

dynamics that captured much less variance was more distributed across brain regions 

(Figure 2A, C, middle).  

 

Despite the robust trial-averaged activity, individual seizures showed highly variable pre-

ictal activity patterns (Figure 3). To address the discrepancy between trial-averaged and 

single-trial dynamics, we implemented a time-shifted tensor components analysis 



 34

(twTCA) model, which attempts to find a set of low-dimensional factors with possible 

time shifts across individual trials to represent the raw data. In spite of the highly variable 

single-trial dynamics, we consistently discovered that allowing for temporal shifts in pre-

ictal dynamics reproduced a more distinct pre-ictal peak (when aligned) to that found via 

trial-averaged PCA (Figure 4). Interestingly we found little relationship between the 

latency and gain of the PiP and the duration of the seizure (Figure 6C,D). However, the 

gains and shifts showed very strong oscillations in their autocorrelations in most animals, 

suggesting that the relatively rapid pre-ictal dynamics may be modulated by some much 

more slowly fluctuating rhythmic brain state such as arousal. 

 

Thalamic pre-ictal peak as a marker of pathological neural synchronization 

Although epilepsy researchers have established a detailed characterization of the 

neurobiology underlying individual spike-wave discharges (SWDs) during absence 

seizures in rodents12,35,43,79, and the various mutations that result in absence 

epilepsy10,13,14,80, our understanding of the process leading into seizures has to date 

remained opaque. Synchronized thalamocortical oscillations are a ubiquitous feature in 

many non-pathological cognitive processes such as working memory81, movement53, 

and sleep7,82. Yet the neural dynamics that differentiate transitions into non-pathological 

and pathological thalamocortical synchronization remain elusive. Here we have identified 

one such process leading into pathological thalamocortical oscillations: a large-

amplitude, 1-2 second long increase in thalamic population firing, which we term the pre-

ictal peak (PiP). While previous work has demonstrated changes in cortical oscillations 

observed via the EEG21,23, we demonstrate here a pre-ictal change in population neural 

dynamics that is restricted to the thalamic portion of the spanning seizure related 

somatosensory corticothalamic circuit.  
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Our results are surprising given the current working hypothesis in the field that the cortex 

initiates absence seizures83–85. While our results do not directly rule out this hypothesis, 

they provide counter-evidence arguing that thalamic networks engage in early pre-ictal 

activity that ultimately coalesces to produce absence seizures. Our work is corroborated 

by recent studies that have indicated the thalamic subcircuits, specifically the higher-

order postereior nucleus (PO), can play a role in pre-ictal synchronization due to its 

expansive bilateral cortical innervations86. Our results, in combination with these studies, 

suggest that the PO, and perhaps other thalamic or sub-cortical structures, may cascade 

the thalamocortical network into a pathological state. The long-lasting PiP that we 

identified may be the trigger itself, or may reflect a process that arises from other brain 

regions such as the striatum87. In any case, the distinct pre-seizure activity, if causative, 

must engage the larger thalamocortical network, and the mechanisms of this 

engagement will be the subject of future studies. 

 

Possible circuit mechanisms underlying pre-ictal thalamic ramping 

The dominant belief in the field is that cortical discharges trigger a cascade within the 

thalamo-cortical circuit that leads to rapidly spreading cortical and thalamic 

synchronization across hemispheres. However, this theory is at odds with our results: 

cortical neurons do not show drastic changes in their dynamics, which is contrasted by 

neurons within the higher-order thalamus. It seems there are non-cortical mechanisms at 

play that either prime the thalamocortical circuit for synchronization, or at the least are 

reflected by sudden changes in thalamic activity. 

 

One possibility is that the reticular thalamus (RT) – the major source of inhibition within 

the thalamus – experiences a state-change that results in dis-inhibition of the thalamus. 

Indeed, many studies have pointed to the critical role of the RT in thalamocortical 
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processing and synchronization, and the RT deficits are implied in absence-seizure 

models. It is possible that such sudden changes in RT dynamics are reflected by 

changes in the dynamics of thalamocortical neurons, and that together this altered 

thalamic state primes the thalamocortical system for synchronization and an evolution 

along a pro-seizure dynamical regime. 

 

More generally, pre-ictal thalamic ramping might lead to a recruitment of latent cortical 

dynamics that reverberate across a diffuse cortical circuit and synchronize deep cortical 

L5/6 neurons. A strong enough synchronized output may provide the critical input to the 

RT to induce a large enough synchronized burst and a subsequent thalamic burst via 

low-threshold rebound bursts, thus launching the corticothalamic circuit into a runaway 

oscillation. Critically, the ability of a such a priming signal from the thalamus to initiate a 

corticothalamic seizure is likely dependent on arousal state88,89. It is necessary to study 

this complex relationship in more detail to build a better understanding of absence 

seizure initiation and the situations in which the corticothalamic system is subject to 

hypersynchronization.   

 

Of course, given the limited spatial extent of the silicon probes that we used in this study, 

we cannot exclude the possibility that other cortical regions influence thalamic dynamics 

during the pre-ictal window. Our results do however argue that the somatosensory 

cortex is not as causally involved in seizure initiation as previous studies have 

suggested. 

 

PiP latency and gain modulation: a window into propagating epileptic activity? 

The latencies and gains of the PiPs may reflect spatiotemporal propagation of localized 

epileptic activity throughout the thalamocortical network. Keeping in mind that our 
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recording electrodes only span a tiny sliver of the network, it may be that pro-epileptic 

neural activity propagates through this network through various paths. Consequently, 

such activity may pass by our recording electrodes at different times on a per-seizure 

basis, resulting in what appears as pre-ictal temporal jitter across seizures. Similarly, the 

particular local brain regions that we have recorded may be more or less strongly 

recruited during the pre-ictal period prior to each seizure, again resulting in apparent 

gain variability across trials. 

 

Indeed propagating epileptic activity has been reported in several animal models of 

temporal lobe epilepsy90,91, as well as in humans92,93. Interestingly, different aspects of 

the seizures such as pre-ictal and ictal-discharges show distinct onset regions and 

propagation routes90. Further, propagation dynamics in temporal lobe epilepsy have 

been shown to vary in speed despite consistent propagation routes, which depends on 

overall GABA-mediated network inhibition78,91. Thus, it may be that pre-ictal propagation 

dynamics in absence epilepsy also depend on an as yet unidentified ongoing network 

state. Further, these dynamics may co-modulate with ongoing brain state such as 

arousal94,95.  

 

This is one potential explanation for the oscillations we observed in the auto-correlations 

of the gains and shifts (Figure 6C). Unfortunately, this spatial sampling limitation is a 

burdensome problem for many epileptologists and systems neuroscientists. Yet, these 

results lead to an intriguing hypothesis of localized spatiotemporal propagation of pro-

epileptic neural activity that may be tested with multiple electrode shanks or in vivo 

imaging techniques. Nonetheless, the coupling of short (sudden pre-ictal increase in 

thalamic activity) and long (oscillations in pre-ictal amplitude/timing over multiple 

seizures) suggests there are dynamic interactions between local circuit function and 
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more global brain states (e.g. arousal) that might affect absence seizures. At the very 

least, these oscillations show shifts in brain processes are reflected in pre-ictal states, 

which can be measured and incorporated into existing algorithms to improve online 

seizure prediction.
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