
cholera and temperature is first observed to
the north of Bangladesh over the Himalayas,
where temperature leads cholera increases by
6 months (Fig. 5). The pattern then moves
south, though it weakens, as the lag to cholera
decreases. Ambient temperatures have also
been implicated in the dynamics of diarrhoeal
diseases and of V. cholerae in the environ-
ment in Peru (5, 22), and SSTs have been
shown to display a bimodal seasonal cycle
similar to that of cholera cases in Bangladesh
(2, 4).

Another mediating factor in the ENSO-
cholera relation might be the melting of the
snowpack in the Himalayas, through its effect
on the monsoons, precipitation, and river dis-
charge. This scenario, which remains to be
investigated, is suggested by the strong but
reduced pattern appearing to the north of
Bangladesh (Fig. 5, first and second panels).
Floods and droughts can affect not only hu-
man interactions with water resources and
therefore exposure to the pathogen, but also
sanitary conditions and susceptibility to disease.
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Myotonic Dystrophy in
Transgenic Mice Expressing an

Expanded CUG Repeat
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Myotonic dystrophy (DM), the most common form of muscular dystrophy in
adult humans, results from expansion of a CTG repeat in the 39 untranslated
region of the DMPK gene. The mutant DMPK messenger RNA (mRNA) contains
an expanded CUG repeat and is retained in the nucleus. We have expressed an
untranslated CUG repeat in an unrelated mRNA in transgenic mice. Mice that
expressed expanded CUG repeats developed myotonia and myopathy, whereas
mice expressing a nonexpanded repeat did not. Thus, transcripts with expanded
CUG repeats are sufficient to generate a DM phenotype. This result supports
a role for RNA gain of function in disease pathogenesis.

Myotonic dystrophy (DM, prevalence 1 in 7400
live births) is characterized by dominantly in-
herited muscle hyperexcitability (myotonia),
progressive myopathy, cataracts, defects of car-
diac conduction, neuropsychiatric impairment,
and other developmental and degenerative
manifestations (1). This complex phenotype re-

sults from the expansion of a CTG repeat in the
39 untranslated region (39UTR) of the DMPK
gene, which encodes a serine-threonine protein
kinase (2). The transcripts from the mutant
allele are retained in the nucleus (3, 4), and
levels of DMPK protein are correspondingly
reduced (5). The expanded repeat also changes
the structure of adjacent chromatin (6) and
silences the expression of a flanking gene (7, 8),
SIX5, which encodes a transcription factor.

The effects on DMPK and SIX5 expression
may account for particular aspects of the DM
phenotype. Dmpk knockout mice have reduced
force generation in skeletal muscle (9) and ab-
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normal cardiac conduction (10), which suggests
that loss of DMPK function may contribute to
the muscle weakness and cardiac disease in
DM. Six5 knockout mice have an increased
frequency of cataracts (11, 12), suggesting that
loss of SIX5 function underlies the development
of cataracts in DM. However, neither Dmpk nor
Six5 knockout mice have reproduced the myo-
tonia and progressive myopathy (9, 11, 13) that
are the most characteristic and severe features
of the disease. This suggests a species differ-
ence in the requirement for SIX5 or DMPK, or
the existence of another independent effect of
the expanded repeat.

We investigated the possibility that the
pathogenic effect of the DM mutation is medi-
ated by the mutant mRNA—in other words,
that the nuclear accumulation of expanded
CUG repeats is toxic to muscle fibers. This
possibility was suggested by the unusual loca-
tion (39 noncoding sequence) of the mutation,
the retention of mutant DMPK mRNA in mus-
cle nuclei (3), evidence that expanded CUG
repeats form extended hairpins (14, 15), and the
observation that transcripts with expanded
CUG repeats inhibit the differentiation of myo-
genic cells in tissue culture (16). We used a
genomic fragment containing the human skel-
etal actin (HSA) gene (17) to express an un-
translated CUG repeat in the muscle of trans-
genic mice. An expanded (;250 repeats) or
nonexpanded (5 repeats) CTG repeat was in-
serted in the final exon of the HSA gene, mid-
way between the termination codon and the

polyadenylation site (Fig. 1A) (18). This place-
ment is similar to the relative position of the
CTG repeat within the human DMPK gene, but
the repeat tract is shorter than the highly ex-
panded alleles (1 to 4000 CTG repeats) in DM
skeletal muscle (19). Except for the repeat, the
HSA constructs are devoid of sequences from
the DM locus. Transgenic mice expressing a
similar HSA fragment without the added CTG
repeat have neither increased actin content nor
abnormal muscle histology (20, 21), despite
having increased levels of actin mRNA. (Hu-
man and murine skeletal actin have the same
amino acid sequence.)

We obtained seven lines of transgenic mice
expressing the long repeat (LR) and five ex-
pressing the short repeat (SR) (Fig. 1B and
Table 1) (22). The transgene was expressed
only in skeletal muscle (23). Some of the mice
from the HSALR lines carrying the highest num-
ber of transgene copies (LR20a and LR21)
showed silencing of the transgene. The expand-
ed CTG repeats were fully transcribed, as
shown by the appropriate increase in the length
of the HSALR mRNA and its hybridization with
a (CAG)10 probe (Fig. 1C).

Analysis of the HSALR mRNA by North-
ern blot (Fig. 1C) and sequencing of HSALR

cDNAs revealed that the long-repeat tran-
scripts were fully spliced and polyadenylated,
and that the actin coding sequence was intact
(24). A variable amount of the HSA mRNA
in line L32a was shortened (Fig. 1B) because
of activation of cryptic splice sites in the

39UTR, which results in the excision of the
CUG repeat tract and 72 nucleotides (nt) of
flanking sequence in an intron (25). This
splice event was also detected at low levels
by reverse transcription–polymerase chain re-
action (RT-PCR) in other long-repeat lines,
but not in lines with short repeats.

The phenotype of mice in line LR32a was
analyzed most extensively because the ex-
pression level of the long-repeat transgene
was high and silencing was infrequent. These
mice showed normal weight gain and histol-
ogy of nonmuscle tissue, but after weaning
they had a mortality of 41% by 44 weeks
(versus ,5% in nontransgenic or HSASR

mice). Necropsy did not reveal the cause of
death. In DM, cardiac arrhythmia is the sec-
ond leading cause of death. Although we did
not detect HSALR expression in the heart, the
possibility of regional, low-level, or transient
expression has not been excluded. There was
no evidence of muscle weakness in LR32a
mice at 6 months of age (26).

Electromyography in HSALR lines revealed
high-frequency (50 to 200 Hz) runs of muscle
action potentials that continued for 1 to 20 s
after insertion or repositioning of the recording
electrode (Fig. 1E) (27). These repetitive dis-
charges waxed and waned in frequency and
amplitude, as is typical of myotonia in DM.
Myotonic discharges were observed in six of
seven lines that expressed long repeats, but not
in short-repeat or wild-type mice (Table 1). The
long-repeat mice also showed abnormal hind-

Fig. 1. Expression of HSA transgenes. (A) Diagram of HSA construct. Filled
boxes are the HSA coding sequence. (B) Analysis of skeletal actin expression
in vastus (quadriceps) muscle by Northern blot using human- or murine-
specific actin cDNA probes. The human probe detects transgene output. The
murine probe is a load standard that detects endogenous actin mRNA. The
human RNA was isolated from a surgical sample and is partially degraded. (C)
Northern blot of total cellular RNA (3 mg), nonpolyadenylated RNA (3 mg),
and polyadenylated RNA (100 ng) with human-specific skeletal actin cDNA
probe or (CAG)10 oligonucleotide. A small proportion of the HSALR RNA is
present in the nonpolyadenylated [polyA(2)] fraction. It is unclear whether

these polyA(2) transcripts are the result of incorrect formation or degrada-
tion of the 39 end, or of incomplete fractionation. (D) Analysis of actin protein
in gastrocnemius muscle by protein immunoblot (upper panel) or Coomassie-
stained polyacrylamide gels (lower panels) does not show aberrant migration
of actin or increased actin mass in short-repeat line SR29 (lane 3) or
long-repeat line LR32a (lanes 4 and 5) compared with nontransgenic litter-
mates (lanes 1 and 2). (E) Myotonic discharge in paraspinal muscle of a
mouse from line LR32a, elicited by brief movement of the EMG electrode. (F)
Frequency histogram of cross-sectional area shows increased variability of
muscle fiber size in long-repeat line LR329 relative to short-repeat line SR24.
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limb posture when they initiated movement
after a period of inactivity or when they were
suspended by the tail. Myotonia was present in
HSALR mice as early as 4 weeks of age, when
the muscles had a normal histologic appear-
ance. These observations indicate that HSALR

mice have a true myotonic disorder, rather than
nonspecific hyperexcitability associated with
muscle necrosis.

Mice that expressed the long-repeat trans-
gene developed histologically defined myop-
athy, whereas those expressing short repeats
did not (Fig. 2 and Table 1) (28). Six of seven
lines expressing long repeats showed a con-
sistent pattern of muscle histopathology, in-
cluding increases in central nuclei and ring
fibers and variability in fiber size (Fig. 1F).
Higher levels of HSALR expression were as-
sociated with more severe pathology (Table
1). Although abundant central nuclei, vari-
ability in fiber size, and ring fibers can each
be observed in other disorders, this constel-
lation of features in the absence of muscle
fiber necrosis is suggestive of DM (29). In
addition, mice in line LR32a had up-regulat-
ed the activity of succinate dehydrogenase
(Fig. 2H) and cytochrome oxidase (23), a
characteristic feature of oxidative muscle fi-
bers. This alteration may have been triggered
by the repetitive myotonic discharges, be-
cause a similar oxidative transformation in
the muscle of Clcn1Adr myotonic mice is
reversible with anti-myotonia treatment (30).
The proportion of oxidative fibers is also
increased in human DM (31).

To quantitate the changes in myonuclear
number and location, we performed mor-
phometry with antibodies to laminin to out-
line the basement membrane of muscle fibers

(Fig. 2, E and F) (32) and to distinguish
muscle nuclei from the nuclei of interstitial
cells. Relative to mice expressing short re-
peats, mice in line LR32a had more than
twice the number of nuclei per muscle fiber
and a much higher proportion of central nu-
clei (Table 2). In human DM there is a sim-
ilar up-regulation of myonuclear number and
a marked increase in central nuclei (33).

The intracellular location of expanded CUG
repeats was determined by fluorescence in situ

hybridization (FISH) (34). The long-repeat
transcripts were retained in the nucleus in mul-
tiple discrete foci (Fig. 2G) reminiscent of those
seen in fibroblasts and myoblasts from DM
patients (3). Because the expanded CUG repeat
is the only sequence shared by the HSALR and
DMPK mRNAs, it appears that this sequence is
sufficient to trigger the nuclear retention of a
mature mRNA.

These results are consistent with the idea
that transcripts with expanded CUG repeats are

Table 1. Characteristics of HSA transgenic lines. For relative HSA expression levels, 111 is similar to the
level of HSA mRNA in human skeletal muscle. For electromyography, the number of mice showing
myotonia per number examined is shown. “2” indicates lines that were not examined. Histologic analysis
and electromyography were performed on mice aged 6 to 14 months, except for lines LR32a and LR41,
where seven younger mice (1 to 4 months) were also analyzed. Twenty-two mice in line LR32a had
abundant myotonia in all regions examined, and seven had myotonia in paraspinal but not forelimb
muscles (hindlimbs were not examined). Six hemizygous LR41 mice did not have myotonia up to 14
months of age, but four homozygous animals all developed myotonia before the age of 4 months. CN,
central nuclei; 111 indicates CN in more than 25% of fibers.

Line
Copy

number
mRNA level Myotonia Muscle histopathology

Wild type – – 0/16 Normal (n 5 16)
SR05 4 1 – Normal (n 5 2)
SR25 20 11 – Normal (n 5 1)
SR29 6 111 0/6 Normal (n 5 5)
SR30 4 11 0/5 Normal (n 5 5)
SR40 2 111 0/4 Normal (n 5 4)
LR11 1 0 0/5 Normal (n 5 8)
LR5a 12 0 – Normal to 1 CN (n 5 2)
LR5b 2 1 0/4 Normal (n 5 5)
LR41 1 1 4/10 1 to 11 CN, ring fibers (n 5 10)
LR20a 5 0 to 111 4/8 11 to 111 CN, ring fibers, sarcoplasmic

masses (n 5 16)
LR20b 2 11 6/6 11 CN, ring fibers, rare necrotic fiber (n 5 5)
LR21 5 0 to 111 4/4 1 to 11 CN (n 5 9)
LR32a 4 11 to 111 29/31 111 CN, atrophic fibers, ring fibers,

sarcoplasmic masses (n 5 19)
LR32b 2 11 2/2 11 CN, atrophic fibers, ring fibers (n 5 3)

Fig. 2. Muscle histology of short-repeat (line SR29) (A to D) or long-
repeat (line LR32a) (E to H) transgenic mice. Representative images are
transverse frozen sections of vastus muscle obtained from 6-month-old
mice. Hematoxylin and eosin–stained muscle is normal in line SR29 (A)
but shows increased variability in fiber size, split fibers, and central nuclei
in line LR32a (E). Fluorescence microscopy using stains for nuclei (DAPI,
blue) and basement membrane (anti-laminin, green) shows increased
central and peripheral muscle nuclei in line LR32a (F) compared to line

SR29 (B). FISH using CAG repeat oligonucleotide probe shows multiple
discrete foci of expanded CUG repeats (green) in muscle nuclei (blue) of
line LR32a (G), but not in line SR29 (C). These results are representative
of five separate FISH experiments in line LR32a and two experiments in
lines LR41 and LR20b. Histochemical stains for succinate dehydrogenase
show increased activity and loss of fiber-type distinctions in line LR32a
(H) relative to line SR29 (D). Scale bars, 5 mm in (C) and (G), 100 mm in
other panels.
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deleterious in muscle fibers. A direct effect by
the CTG repeat tract in DNA is unlikely, be-
cause HSALR mice that do not express the
mRNA appear normal. An effect by actin pro-
tein is unlikely because (i) HSASR lines had no
myopathy or myotonia, (ii) the levels of actin
protein were not increased in long- or short-
repeat lines (Fig. 1D) (35), (iii) mutant actin
was not detected (Fig. 1D), (iv) nuclear reten-
tion would limit the translation of HSALR tran-
scripts, and (v) the protein product of the
HSALR mRNA, if it were translated, would be
identical to murine skeletal actin. Current for-
mulations for the mechanism of genetic domi-
nance, which posit effects solely at the level of
proteins encoded by mutant genes (36), may
need to be revised.

The mechanism by which transcripts with
expanded CUG repeats induce myotonia and
muscle degeneration is unclear. Models in-
volving trans-interference with polyadenyla-
tion (37) or splicing (38), sequestration of a
CUG binding protein (39), or interactions
with double-stranded RNA binding proteins
(15) have been proposed. The deleterious
effects of expanded CUG repeats are proba-
bly not restricted to skeletal muscle or DM,
because expansion of an untranslated CTG
repeat in a brain-expressed gene was recently
associated with autosomal dominant cerebel-
lar degeneration (40).

Muscle wasting and weakness is a fre-
quent feature of DM. HSALR mice, however,
have not developed obvious weakness or
muscle wasting by the age of 6 months. It is
possible that muscle regeneration and repair
can compensate for the myopathy in HSALR

mice. Alternatively, the HSALR model may
be incomplete because of factors related to
the CUG repeat (its length, developmental
expression, and flanking sequences) or a re-
quirement for other effects of the DM muta-
tion, such as deficiency of DMPK or SIX5.
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Table 2. Morphometric analysis of muscle in HSA transgenic lines. Values are means 6 SD for
measurements of .100 muscle fibers per mouse, n 5 4 mice per group. *P , 0.05, **P # 0.001.

Short-repeat
SR29

Long-repeat
LR32a

Muscle fiber cross-sectional area (mm2) 1849 6 329 2710 6 550*
Muscle nuclei per muscle fiber 0.8 6 0.14 2.9 6 0.7**
Number of muscle nuclei per fiber cross-sectional

area (mm2)
450 6 40 1100 6 400*

Muscle nuclei that are central (%) 1.4 6 0.6 38 6 0.09**
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